K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Lời giải

áp dụng

\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) với \(\forall a,b\) đẳng thức khi ab>=0 nghĩa là a, b cùng "dấu"

\(VP=\left|x-y\right|+\left|y-z\right|\ge\left|\left(x-y\right)+\left(y-z\right)\right|=\left|x-z\right|=VT\)

\(\Rightarrow\left|x-z\right|\le\left|x-y\right|+\left|y-z\right|\)

Đẳng thức khi (x-y)(y-z)>=0

26 tháng 12 2017

Để ý đẳng thức : \(\dfrac{xy}{\left(y-z\right)\left(z-x\right)}+\dfrac{yz}{\left(z-x\right)\left(x-y\right)}+\dfrac{xz}{\left(x-y\right)\left(y-z\right)}=\dfrac{xy\left(x-y\right)+yz\left(y-z\right)+xz\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-\dfrac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=-1\)

Ta luôn có: \(\left(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}\right)^2\ge0\) ;\(\forall x;y;z\)

\(\Leftrightarrow\dfrac{x^2}{\left(y-z\right)^2}+\dfrac{y^2}{\left(z-x\right)^2}+\dfrac{z^2}{\left(x-y\right)^2}\ge-2\sum\dfrac{xy}{\left(y-z\right)\left(z-x\right)}=2\)

(ĐPcm)

Dấu = xảy ra khi \(\dfrac{x}{y-z}+\dfrac{y}{z-x}+\dfrac{z}{x-y}=0\)

29 tháng 12 2017

Thêm 1 ý tưởng đc buff từ cách trước :))

\(BDT\LeftrightarrowΣ\dfrac{x^2}{\left(y-z\right)^2}-2=\left(Σ\dfrac{x}{y-z}\right)^2-2Σ\dfrac{xy}{\left(y-z\right)\left(z-x\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}-2\dfrac{Σ\left(x^2y-x^2z\right)}{\prod\left(x-y\right)}-2\)

\(=\dfrac{\left(Σ\left(x^3-x^2y-x^2z+xyz\right)\right)^2}{\prod\left(x-y\right)^2}\ge0\)

19 tháng 1 2021

Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.

Cần chứng minh:

\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \) 

Đặt 

\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)

Ta có:

\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)

Đẳng thức xảy ra khi $...$

NV
8 tháng 4 2022

\(\dfrac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{xyz}{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\dfrac{1}{8}\)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 2 2020

Ai giải hộ câu này nhanh đi mà

14 tháng 6 2017

\(BĐT\Leftrightarrow\dfrac{x}{y^3}+\dfrac{y}{z^3}+\dfrac{z}{x^3}\ge x+y+z\)

Đặt \(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Rightarrow abc\ge1\)

\(BĐT\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(VT=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\dfrac{\left(ab+bc+ac\right)^2}{ab+bc+ac}=ab+bc+ac\)

Ta có \(abc\ge1\)

\(\Rightarrow\left\{{}\begin{matrix}bc\ge\dfrac{1}{a}\\ab\ge\dfrac{1}{c}\\ac\ge\dfrac{1}{b}\end{matrix}\right.\Rightarrow bc+ac+ab\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)

\(\Leftrightarrow\dfrac{x\left(1-y^3\right)}{y^3}+\dfrac{y\left(1-z^3\right)}{z^3}+\dfrac{z\left(1-x^3\right)}{x^3}\ge0\)