K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Ta có: \(4\ge2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

    \(\Rightarrow x+y\le2\)

Ta có: \(P=\sqrt{x\left(14x+10y\right)}+\sqrt{y\left(14y+10x\right)}\)

              \(=\sqrt{\dfrac{24x\left(14x+10y\right)}{24}}+\sqrt{\dfrac{24y\left(14y+10x\right)}{24}}\le\dfrac{\dfrac{24x+14x+10y}{2}}{\sqrt{24}}+\dfrac{\dfrac{24y+14y+10x}{2}}{\sqrt{24}}\)

\(\Leftrightarrow P\le\dfrac{24\left(x+y\right)}{2\sqrt{6}}\le\dfrac{24.2}{2\sqrt{6}}=4\sqrt{6}\)

Dấu "=" xảy ra ⇔ x = y = 1

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

29 tháng 2 2020

VT \(\ge\frac{\sqrt{3\sqrt[3]{x^3.y^3.1}}}{xy}+\frac{\sqrt{3\sqrt[3]{y^3.z^3.1}}}{yz}+\frac{\sqrt{3\sqrt[3]{z^3.x^3.1}}}{zx}\)( cauchy)

\(\sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{zx}}\)

\(\ge3\sqrt{3}\)( cauchy)

"=" <=> x = y =z.

29 tháng 2 2020

Bài này dùng \(a^3+b^3\ge ab\left(a+b\right)\) được không nhỉ ??

Em ngại làm lắm cô Chi, cô thử cách này có được không ạ ?

\(xyz+x^3+y^3\ge xy\left(x+y+z\right)\)\(\Rightarrow\sqrt{1+x^3+y^3}\ge\sqrt{xy\left(x+y+z\right)}\)

Các mấy cái kia cũng biến đổi vậy.

Không chắc nx :((

4 tháng 9 2019

Pt tương đương:

\(2\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}+3\)

Có: \(\sqrt{3\left(x^2+y^2+z^2\right)}\ge\sqrt{3\cdot3\left(xyz\right)^2}=3\)

Đồng thời:

\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=x+y+z\le\sqrt{\left(x+y+z\right)^2}\le\sqrt{3\left(x^2+y^2+z^2\right)}\)

Rồi cộng lại