K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

Cũng đang bí bài này!!! Nhưng đây là bài lớp 7 mà!!!:)

 

15 tháng 4 2019

+) Th1: nếu 3 số x;y;z có cùng số dư khi chia cho 3 => x - y ; y - z; z - x chia hết  cho 3

=> Tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 =27

+) Th2: Nếu có 2 trong 3 số có cùng số dư khi chia cho 3. Giả sử hai số đó là x; y. 

*Nếu x; y chia cho 3 dư 0 => x - y chia hết cho 3

 mà (x - y)(y - z)(z -x) = x+ y + z => x+ y + z chia hết cho 3 => z chia hết cho 3

=> (y - z); (z - x) chia hêtw cho 3 => tích (x - y)(y - z)(z - x) chia hết cho 3.3.3 = 27

* Nếu x; y chia cho 3 dư 1 => x - y chia hết cho 3 => x+ y + z chia hết cho 3. mà x + y chia cho 3 dư 2 => z chia cho 3 dư 1

=> x; y ; z chia cho 3 có cùng số dư => Tích (x - y)(y - z)(z-x) chia hết cho 27

* Tương tự, nếu x; y chia cho 3 dư 2 => z chia cho 3 dư 2 => Tích (x - y)(y - z)(z - x) chia hết cho 27

=> x+ y + z chia hết cho 27

+) Th3: Cả số x; y ; z không có cùng số dư khi cho 3

=> x; y; z chia cho 3 dư là  0;1 ; 2 và các hiệu x - y ; y - z; z - x không chia hết cho 3

x; y ;z chia cho 3 dư 0; 1;2 => x+ y + z chia hết cho 3 

tích (x - y)(y - z)(z - x) không chia hết cho 3 mà (x - y)(y - z)(z - x)  = x+ y + z

=> Th3 không xảy ra

Vậy ....(bạn tự kết luận nhé)

4 tháng 7 2017

Ta có: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow a^5+b^5+2abc\ge a^2b^2\left(a+b\right)+2abc\)

\(\ge ab\left[ab\left(a+b\right)+2c\right]\ge ab\left[2\left(a+b\right)+2c\right]=2ab\left(a+b+c\right)\) (áp dụng với \(a,b,c\ge\sqrt{2}\))

\(\Rightarrow\frac{1}{a^5+b^5+2abc}\le\frac{1}{2ab\left(a+b+c\right)}\)

Áp dụng vào bài toán ta được

\(P\le\frac{1}{2xy\left(x+y+z\right)}+\frac{1}{2yz\left(x+y+z\right)}+\frac{1}{2zx\left(x+y+z\right)}\)

\(=\frac{x+y+z}{2xyz\left(x+y+z\right)}=\frac{1}{2xyz}\)