K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

>= and x;y;z>0

Ta có: \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Rightarrow\left(x^2+y^2-2xy\right)+\left(y^2+z^2-2yz\right)+\left(x^2+z^2-2xz\right)\ge0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) *đúng*

23 tháng 4 2018

thỏa mãn nhé

23 tháng 4 2018

đề có sai ko

16 tháng 6 2017

chứng minh

\(x^2+y^2+z^2\ge xy+yz+xz\)

<=>\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

<=>\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

<=>\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

<=>\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)\ge0\)

<=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) luôn đúng!

Dấu "=" xảy ra khi x=y=z

8 tháng 1 2017

phá cái Tổng  BP ra là kết quả:

chuyển hết số số BP sang VP ghép BP cũng ra kết quả 

6 tháng 6 2018

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

6 tháng 6 2018

j mà lắm bài thế :D

20 tháng 8 2016

Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.

Đặt \(m=x+y+z\)  thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)

                                            \(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)

\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1) 

Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)

Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)