K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2xy\sqrt{x}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2yz\sqrt{y}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2xz\sqrt{z}}=\dfrac{1}{xz}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 1 )

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2y^2}}=\dfrac{2}{xy}\\\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge2\sqrt{\dfrac{1}{y^2z^2}}=\dfrac{2}{yz}\\\dfrac{1}{z^2}+\dfrac{1}{x^2}\ge2\sqrt{\dfrac{1}{x^2z^2}}=\dfrac{2}{xz}\end{matrix}\right.\)

\(\Rightarrow2\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\) ( 2 )

Từ ( 1 ) ( 2 )

\(\Rightarrow VT\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x^3+y^2}+\dfrac{2\sqrt{y}}{y^3+z^2}+\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\) ( đpcm )

NV
27 tháng 7 2021

Xài Bunhiacopxki thì bài này sẽ hơi dài:

Đặt vế trái là P

Ta có:

\(\left(\dfrac{1}{4}+4\right)\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Leftrightarrow\dfrac{17}{4}\left(x^2+\dfrac{1}{x^2}\right)\ge\left(\dfrac{x}{2}+\dfrac{2}{x}\right)^2\)

\(\Rightarrow\sqrt{x^2+\dfrac{1}{x^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{2}{x}\right)\)

Tương tự:

\(\sqrt{y^2+\dfrac{1}{y^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{y}{2}+\dfrac{2}{y}\right)\) ; \(\sqrt{z^2+\dfrac{1}{z^2}}\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{z}{2}+\dfrac{2}{z}\right)\)

Cộng vế: \(P\ge\dfrac{2}{\sqrt{17}}\left(\dfrac{x}{2}+\dfrac{y}{2}+\dfrac{z}{2}+\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+4\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right)\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{36}{x+y+z}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(x+y+z+\dfrac{9}{4\left(x+y+z\right)}+\dfrac{135}{4\left(x+y+z\right)}\right)\)

\(P\ge\dfrac{1}{\sqrt{17}}\left(2\sqrt{\dfrac{9\left(x+y+z\right)}{4\left(x+y+z\right)}}+\dfrac{135}{4.\dfrac{3}{2}}\right)=\dfrac{3}{2}\sqrt{17}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

NV
14 tháng 9 2021

\(VT^2\le3\left(\dfrac{1}{2x^2+y^2+3}+\dfrac{1}{2y^2+z^2+3}+\dfrac{1}{2z^2+x^2+3}\right)\)

Mặt khác:

\(\dfrac{1}{2\left(x^2+1\right)+y^2+1}\le\dfrac{1}{4x+2y}=\dfrac{1}{2}\left(\dfrac{1}{x+x+y}\right)\le\dfrac{1}{18}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow VT^2\le\dfrac{1}{6}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\)

\(\Rightarrow VT\le\dfrac{\sqrt{6}}{2}\)

14 tháng 9 2021

Anh ơi có thể cho e biết cái kết quả khi bình phương đc ko ạ

 

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)

\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)

Áp dụng BĐT Cauchy-Schwarz:

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)

Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)

\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)

Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)

\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)

\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé

NV
18 tháng 4 2021

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

NV
18 tháng 4 2021

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.

13 tháng 8 2018

Ta có:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\)

Áp dụng BĐT Cosi ta có:

\(x\sqrt{1-x^2}\le\dfrac{x^2+1-x^2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{x^3}{x\sqrt{1-x^2}}\ge2x^3\)

Cmtt:

\(\dfrac{y^3}{y\sqrt{1-y^2}}\ge2y^3\)

\(\dfrac{z^3}{z\sqrt{1-z^2}}\ge2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}+\dfrac{y^3}{y\sqrt{1-y^2}}+\dfrac{z^3}{z\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\) (ĐPCM)