Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4=\left(x^2+5yx+4y^2\right)\left(x^2+5yx+6y^2\right)+y^4\)
\(=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2-y^4+y^4=t^2\) là số chính phương. Ở đây \(t=x^2+5yx+5y^2.\)
à em hiểu rồi lây\(\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]\) vì y+4y=2y+3ysau đó dùng đặt với \(t=x^2-5xy+\frac{4y^2+6y^2}{2}\)
Ta có: \(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(A=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)
\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+4y^2=a\)
\(\Rightarrow A=a\left(a+2y^2\right)+y^4\)
\(A=a^2+2ay^2+y^4\)
\(A=\left(a+y^2\right)^2\)
Thay \(x^2+5xy+4y^2=a\), ta có
\(A=\left(x^2+5xy+4y^2+y^2\right)^2\)
\(A=\left(x^2+5xy+5y^2\right)^2\)
Vậy với mọi x, y nguyên thì A là số chính phương.
Đề bài thực chất thiếu điều kiện \(xyz\ne0.\) Bây giờ ta sẽ giải bài toán với thêm điều kiện bổ sung này:
Theo giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1.\)
Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}.\)
Chứng minh tương tự, \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)},\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\).
Từ đó suy ra vế trái bằng \(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\) (ĐPCM).
Ta đặt A = \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left[\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)\right]+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+4y^2=t\Rightarrow A=t\left(t+2y^2\right)+y^4\)
\(=t^2+2ty^2+y^4=\left(t+y^2\right)^2\)
Do x, y nguyên nên t nguyên, vậy thì t + y2 cũng nguyên. Suy ra A là số chính phương.
cô huyền giỏi quá. Nhờ có cô mà em đã biết làm bài này rồi ạ