Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 +y2 +9+2xy-6x-6y)+(y2+4y+4)=0
(x+y-3)2+(y+2)2=0.vì (x+y-3)2>=0;(y+2)2>=0
suy ra x+y-3=0 và y+2=0
x=5;y=-2
thay x,y vào bt H ta đc H=1
x2 + 2y2 + 2xy - 6x - 2y + 13 = 0
<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0
<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0
<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0
<=> ( x + y - 3 )2 + ( y + 2 )2 = 0
Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra <=> x = 5 ; y = -2
Thế x = 5 ; y = -2 vào A ta được :
\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Từ đề bài \(\Rightarrow\left(x^2+2xy+y^2\right)-2x-2y+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+y^2-4y+4=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2=0\)
Lập luận tìm được \(x=-1;y=2\) thay vào A (tự tính)
\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)
\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
\(x^2+2y^2+2xy-2x-6y+5=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(2x+2y\right)+1+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left(x+y-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Khi đó \(P=\dfrac{\left(-1\right)^2-7\cdot\left(-1\right)\cdot2+51}{-1-2}=-22\)