Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+1/y và y+1/x là các số nguyên
=> (x+1/y).(y+1/x) là số nguyên
<=> xy+1/xy+2 là số nguyên
<=> xy+1/xy là số nguyên
<=> (xy+1/xy)^2 là số tự nhiên
<=> x^2y^2+1/x^2y^2+2 là số tự nhiên
=> x^2y^2+1/x^2y^2 là số nguyên
=> ĐPCM
k mk nha
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) ≥ 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2
a) \(2xy^2+x+y+1=x^2+2y^2+xy\)
\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)
\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)
\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)
\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)
Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)
Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)
Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)
Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)
Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).
\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+2+\frac{1}{xy}\)
vì 2 nguyên nên \(xy+\frac{1}{xy}\)nguyên
\(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)
nen \(x^2y^2+\frac{1}{x^2y^2}\)nguyên