K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)

Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)

Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).

19 tháng 8 2016

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+2+\frac{1}{xy}\)

vì 2 nguyên nên \(xy+\frac{1}{xy}\)nguyên

\(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)

nen \(x^2y^2+\frac{1}{x^2y^2}\)nguyên

1 tháng 1 2018

x+1/y và y+1/x là các số nguyên 

=> (x+1/y).(y+1/x) là số nguyên

<=> xy+1/xy+2 là số nguyên 

<=> xy+1/xy là số nguyên

<=> (xy+1/xy)^2 là số tự nhiên

<=> x^2y^2+1/x^2y^2+2 là số tự nhiên

=> x^2y^2+1/x^2y^2 là số nguyên

=> ĐPCM

k mk nha

1 tháng 1 2018

cảm ơn bạn/anh/chị/thầy/cô nhiều nha

9 tháng 10 2016

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4

<=> y2 >= 2y2 - 4 

<=> y<= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) ≥ 4

<=> y2 >= 2y2 - 4 

<=> y2 <= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

13 tháng 1 2020

\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)

\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)

\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)

Dấu "=" xảy ra tai x=y=1/2

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

1 tháng 9 2017

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

6 tháng 12 2017

Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

=>\(xy+\frac{1}{xy}\in Z\)

=>\(\left(xy+\frac{1}{xy}\right)^3\)

=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)

=>ĐPCM