Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
\(\ge\frac{4}{\left(x+y\right)^2}+12-\frac{20\left(x+y\right)^2}{4}=11\)
Check xem có sai chỗ nào ko:v
Trời! Chứng minh vậy đọc ai hiểu được chời :)))
Vì \(\frac{1}{x^2+y^2}+\frac{1}{2xy}=\frac{1^2}{x^2+y^2}+\frac{1^2}{2xy}\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}=\frac{4}{\left(x+y\right)^2}\)
\(\frac{3}{2xy}+24xy\ge2\sqrt{\frac{3}{2xy}.24xy}=12\)
Lại quên dấu bằng xảy ra kìa em.
"=" xảy ra <=> x=y=1/2
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(S=\dfrac{x}{2}+\dfrac{1}{2x}+\dfrac{y}{2}+\dfrac{2}{y}+\dfrac{1}{2}\left(x+y\right)\)
\(S\ge2\sqrt{\dfrac{x}{4x}}+2\sqrt{\dfrac{2y}{2y}}+\dfrac{1}{2}.3=\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
chắc là 87,556
duyệt nhanh diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
là 87,556 đó
duyệt diiiiiiiiiiiiiiiiiiiiii maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2