K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

(1/3 -2x)^2018 + (3y-x)^2020 <=0

Mà (1/3 -2x) ^ 2018 >= 0 với mọi x ( vì số mũ chẵn)

       (3y-x) ^ 2020 >= 0 với mọi x,y ( vì số mũ chẵn)

=> 1/3 - 2x =0 và 3y-x=0

+)  1/3 -2x =0

=> 2x= 1/3 -0 = 1/3

=> x= 1/3 : 2 =1/6

+) 3y-x =0

=> 3y - 1/6 = 0 (vì x = 1/6)

=> 3y = 1/6

=> y = 1/6 : 3 = 1/18

Có 1/x + 1/y = 1 : (1/6) + 1: (1/18) = 6+18 =24 (đpcm)

24 tháng 11 2019

\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)

Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\)\(\left(3y-x\right)^{2020}\ge0\forall x,y\)

\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)

Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)

14 tháng 11 2018

Ta có: \(\left(\dfrac{1}{3}-2x\right)^{2018}\ge0\forall x\);

\(\left(3y-x\right)^{2020}\ge0\forall x;y\)

=> \(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\)

mà theo đề thì:\(\left(\dfrac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)

=> Dấu ''='' xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\dfrac{1}{3}-2x=0\\3y-x=0\end{matrix}\right.\)

Ta có: \(\dfrac{1}{3}-2x=0\Rightarrow x=\dfrac{1}{6}\);

\(3y-x=0\Leftrightarrow3y-\dfrac{1}{6}=0\Leftrightarrow3y=\dfrac{1}{6}\Leftrightarrow y=\dfrac{1}{18}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{1}{6}}+\dfrac{1}{\dfrac{1}{18}}=6+18=24\left(đpcm\right)\)

14 tháng 11 2018

thanks bn

đúng thì mk tick

2 tháng 9 2021

 Ko biết Anh gì ơi

23 tháng 11 2021

\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)

23 tháng 11 2021

Em cảm ơn.

6 tháng 3 2022

( x - 1 )2018 + (y - 2 )2020+(z-3)2022=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

\(A=\dfrac{1}{9}\left(-x\right)^{2021}y^2z^3=\dfrac{1}{3}\left(-1\right)^{2021}.2^2.3^3=\dfrac{1}{3}.\left(-1\right).4.27=-36\)

21 tháng 12 2016

\(\left|2x-2\right|^{2017}+\left(3y+10\right)^{2018}=0\left(1\right)\)

Ta thấy: \(\begin{cases}\left|2x-2\right|^{2017}\ge0\\\left(3y+10\right)^{2018}\ge0\end{cases}\)

\(\Rightarrow\left|2x-2\right|^{2017}+\left(3y+10\right)^{2018}\ge0\left(2\right)\)

Từ (1) và (2) suy ra \(\begin{cases}\left|2x-2\right|^{2017}=0\\\left(3y+10\right)^{2018}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-2=0\\3y+10=0\end{cases}\)

\(\Rightarrow\begin{cases}2x=2\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=1\\y=-\frac{10}{3}\end{cases}\)

21 tháng 12 2016

bạn viết đề hơi sai sai