K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

https://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơihttps://olm.vn/thanhvien/thanhlaytv là con chó lông xù nè ae ơi

7 tháng 1 2020

Câu 1 :

Ta có : 5x=\(\overline{...5}\)  (với x là số tự nhiên lớn hơn hoặc bằng 1)

            20y=\(\overline{...0}\)(với y là mọi số tự nhiên)

\(\Rightarrow\left(\overline{...5}\right)+9999=\overline{...4}\)(không thỏa mãn)

\(\Rightarrow\)x=0

\(\Rightarrow\)50+9999=20y

          1+9999=20y

          10000=20y

           y=500

Vậy x=0 và y=500.

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.

16 tháng 8 2020

xyz là số chính phương

4 tháng 4 2016

Sao ko thay cau tra loi cua may ban trc vay

27 tháng 3 2020

Gọi ước chung lớn nhất của x - z và y - z là d ( d \(\in\)\(ℕ^∗\))

\(\Rightarrow\hept{\begin{cases}x-z⋮d\\y-z⋮d\end{cases}}\)

\(\Rightarrow\left(x-z\right).\left(y-z\right)⋮d^2\)

\(\Rightarrow z^2⋮d^2\Rightarrow z⋮d\)

\(\Rightarrow\hept{\begin{cases}x⋮d\\y⋮d\end{cases}}\)

Mà x, y nguyên tố cùng nhau \(\Rightarrow d=1\)

\(\Rightarrow\)\(\left(x-z,y-z\right)=1\)

Mà (x-z)(y-z)=z^2 chính phương

x,y,z thuộc N*

\(\Rightarrow x-z\)và \(y-z\)đều là số chính phương

\(\Rightarrow\hept{\begin{cases}x-z=m^2\\y-z=n^2\end{cases}}\)

với m,n thuộc Z

\(\Rightarrow\left(x-z\right)\left(y-z\right)=z^2=m^2n^2\)

\(\Rightarrow z=mn\)

Ta có: (x-z)+(y-z)=(x+y)-2z

\(\Rightarrow\left(x+y\right)=m^2+n^2+2mn\)

\(\Rightarrow x+y=\left(m+n\right)^2\)

Mặt khác: \(\left(x-z\right)\left(y-z\right)=z^2\)

\(\Rightarrow xy-zy-zx+z^2=z^2\Rightarrow xy-zy-zx=0\)\(\Rightarrow xy-z\left(x+y\right)=0\Rightarrow xy=z\left(x+y\right)\)

\(\Rightarrow xyz=z^2\left(x+y\right)=z^2\left(m+n\right)^2\)là số chính phương với z thuộc N*, m,n thuộc Z (đpcm)

Vậy xyz là số chính phương.