Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(6\left(x+7y\right)=6x+11y+31y\)
\(6x+11y⋮31\) ; \(31y⋮31\)
\(\Rightarrow6\left(x+7y\right)⋮31\)
\(\Rightarrow x+7y⋮31\)
\(\left(3a+7b\right)⋮17\Leftrightarrow6\left(3a+7b\right)=\left(18a+42b\right)⋮17\)(vì \(\left(6,17\right)=1\))
\(\Leftrightarrow\left[\left(18a+42b\right)-17a-34b\right]⋮17\)
\(\Leftrightarrow\left(a+8b\right)⋮17\)
Ta có đpcm.
a/
5x+7y=11(x+y)-(6x+4y)=11(x+y)-2(3x+2y)
11(x+y) chia hết cho 11; 3x+2y chia hết cho 11 => 2(3x+2y) chia hết cho 11
=> 5x+7y chia hết cho 11
b/
5x+y=7(x+y)-(2x+6y)=7(x+y)-2(x+3y)
7(x+y) chia hết cho 7; x+3y chia hết cho 7 => 2(x+3y) chia hết cho 7
=> 5x+y chia hết cho 7
Ta có 4(10x+y)-(x+4y)=40x+4y-x-4y=39x chia hết cho 13
Do x+4y chia hết cho 13 => 4(10x+y) chia hết cho 13 => vì ƯCLN(4;13)=1
=> 10x+y chia hết cho 13
Ta có 5 x +7y chia hết cho 17
suy ra (17x+17y)-(5x+7y)chia hết cho 17
suy ra (17x-5x)+(17y-7y) chia hết cho 17
suy ra 12x +10y chia hết cho 17
suy ra [(12x+10y) chia 2] chia hết cho 17
= 6x +5y chia hết cho 17
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =