Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$ với $k\in\mathbb{R}$. Ta có:
$x_1y_1=k=x_2y_2$
$\Leftrightarrow 8x_1=-12x_2$
$\Leftrightarrow x_1=-1,5x_2$
Thay vô $x_1-5x_2=-39$ thì:
$-1,5x_2-5x_2=-39\Leftrightarrow -6,5x_2=-39$
$\Rightarrow x_2=6$
$x_1=-1,5x_2=-9$
b.
$xy=x_1y_1=(-9).8=-72$
$\Rightarrow y=\frac{-72}{x}$
Lời giải:
a. Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$ với $k$ là số thực nào đó.
Ta có:
$x_1y_1=k=x_2y_2$
$\Leftrightarrow 7x_1=8y_2\Rightarrow x_1=\frac{8}{7}y_2$
Thay vô điều kiện 1 thì:
$2.\frac{8}{7}y_2-3y_2=30$
$\Leftrightarrow y_2=-42$
$x_1=\frac{8}{7}y_2=-48$
b. Từ kết quả phần a suy ra:
$xy=x_1y_1=-48.7=-336$
$\Rightarrow y=\frac{-336}{x}$
Đoạn từ sau chữ "Biết" thiếu dấu liên kết giữa $x_1,y_1,x_2,y_2$. Bạn cần viết lại đề rõ hơn.
\(x,y\) tỉ lệ nghịch \(\Rightarrow\dfrac{x_1}{x_2}=\dfrac{y_2}{y_1}=\dfrac{4}{3}\Rightarrow y_1=\dfrac{3}{4}y_2\)
\(y_1+y_2=14\Rightarrow\dfrac{3}{4}y_2+y_2=14\Rightarrow\dfrac{7}{4}y_2=14\Rightarrow y_2=8\)
\(\Rightarrow y_1=\dfrac{3}{4}\cdot8=6\)
Vì x,y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{2}=\dfrac{y_2}{5}=\dfrac{y_2+y_1}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}y_1=2\cdot3=6\\y_2=3\cdot5=15\end{matrix}\right.\)