K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2015

\(\frac{x}{x^2-x+1}=\frac{1}{2}\Leftrightarrow x^2-3x+1=0\)

\(P=\frac{x^2\left(x^2-3x+1\right)-\left(x^2-3x+1\right)+15x}{x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)+9x}\)

\(=\frac{0-0+15x}{0+0+9x}=\frac{5}{5}\)

19 tháng 8 2018

Giải PT : x2 - 3x + 1 = 0. thay x vào là giải đc

12 tháng 1 2018

\(ĐKXĐ:\)\(x\ne\left\{0;1;2;3;4;5\right\}\)

\(P=\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}\)

\(=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-5}-\frac{1}{x-4}\)

\(=\frac{1}{x-5}-\frac{1}{x}\)

\(=\frac{5}{x\left(x-5\right)}\)

Ta có:     \(x^3-x^2+2=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

Xét:    \(x^2-2x+2=\left(x-1\right)^2+1\)\(>0\)

\(\Rightarrow\)\(x+1=0\)

\(\Leftrightarrow\)\(x=-1\)(t/m)

Vậy   tại     \(x=-1\)  thì:

          \(P=\frac{5}{-1\left(-1-5\right)}=\frac{5}{6}\)

ĐKXĐ \(x\ne0,1,2,3,4,5\)

\(P=\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}\)

\(P=\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+...+\frac{1}{x-5}-\frac{1}{x-4}\)

\(P=\frac{1}{x-5}-\frac{1}{x}\)

\(P=\frac{5}{x\left(x-5\right)}\)

NV
24 tháng 2 2021

\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)

\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)

\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)

24 tháng 2 2021

\(P=x^2-3x+\dfrac{1}{2x}+2\)

\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

Áp dụng bđt cosi và bđt x \(\ge\)2

Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)

Dấu "=" xảy ra <=> x = 2

Vậy MinP = 1/4 <=> x = 2

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)