Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
công thức tính diện tích của tứ giác có 2 đường chéo vuông góc nhau là: tích 2 đường chéo chia 2
Áp dụng: kết quả là 48cm2
a.
Xét hai tam giác MNP và MQP có:
\(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\\MP\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta MNP=\Delta MQP\left(c.c.c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{NMP}=\widehat{QMP}\\\widehat{NPM}=\widehat{QPM}\end{matrix}\right.\) hay MP là phân giác của góc M và P
b.
Do \(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\end{matrix}\right.\) \(\Rightarrow MP\) là trung trực NQ
\(\Rightarrow MP\perp NQ\) (đpcm)
Gọi MP ∩ NQ = {O}
Ta có :
\(S_{MNPQ}=S_{MON}+S_{NOP}+S_{POQ}+S_{QOM}\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM.ON+\frac{1}{2}ON.OP+\frac{1}{2}OP.OQ+\frac{1}{2}OQ.OM\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM\left(ON+OQ\right)+\frac{1}{2}OP\left(ON+OQ\right)\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}OM.NQ+\frac{1}{2}OP.NQ\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}NQ\left(OM+OP\right)\)
\(\Rightarrow S_{MNPQ}=\frac{1}{2}NQ.MP\)
\(\Rightarrow S_{MNPQ}=\frac{18.24}{2}=216\left(cm^2\right)\)
Vậy diện tích tứ giác MNPQ là 216 cm2