K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

Gọi giao điểm của AK và BD là O

hay AK cắt BD tại O(1)

Xét ΔADB có

BQ là đường trung tuyến ứng với cạnh AD

DM là đường trung tuyến ứng với cạnh AB

BQ và DM cắt nhau tại K

Do đó: K là trọng tâm của ΔADB

Suy ra: O là trung điểm của BD

Xét ΔBCD có 

BN là đường trung tuyến ứng với cạnh DC

DP là đường trung tuyến ứng với cạnh BC

BN cắt DP tại G

Do đó: G là trọng tâm của ΔBCD

Suy ra: AG là đường trung tuyến ứng với cạnh BD

mà AO là đường trung tuyến ứng với cạnh BD

và AG,AO có điểm chung là A

nên A,G,O thẳng hàng

hay CG cắt DB tại O(2)

từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

HT~

(nhớ tiick tôi)

Gọi giao điểm của AK và BD là O

hay AK cắt BD tại O(1)

Xét ΔADB có

BQ là đường trung tuyến ứng với cạnh AD

DM là đường trung tuyến ứng với cạnh AB

BQ và DM cắt nhau tại K

Do đó: K là trọng tâm của ΔADB

Suy ra: O là trung điểm của BD

Xét ΔBCD có 

BN là đường trung tuyến ứng với cạnh DC

DP là đường trung tuyến ứng với cạnh BC

BN cắt DP tại G

Do đó: G là trọng tâm của ΔBCD

Suy ra: AG là đường trung tuyến ứng với cạnh BD

mà AO là đường trung tuyến ứng với cạnh BD

và AG,AO có điểm chung là A

nên A,G,O thẳng hàng

hay CG cắt DB tại O(2)

từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

16 tháng 11 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
a. 

Vì $ABCD$ là hình bình hành nên $AB\parallel CD$

$\Rightarrow AG\parallel CH$

$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)

$\Rightarrow AG=CH$

Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh

$\Rightarrow AH=CG$

b.

Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành

$\Rightarrow BE\parallel DF$

c.

Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$

Vì $AGCH$ là hình bình hành nên $AH\parallel CG$

$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình vẽ:

13 tháng 12 2016

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

c, mk k bt lm xl bn

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔCDA có

P là trung điểm của CD

Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và PQ=AC/2(2)

Từ (1) và (2) suy raMN//PQ và MN=PQ

hay MNPQ là hình bình hành