Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A là điểm chính giữa của cung lơn MN
=>AM=AN
=>AO là trung trực của MN
=>AB vuông góc MN tại Evà E là trung điểm của MN
góc BKA=1/2*sđ cung AB=90 độ
góc AEC+góc AKC=90+90=180 độ
=>AKCE nội tiếp
b: Xét ΔBMC và ΔBKM có
góc BMC=góc BKM
góc MBC chung
=>ΔBMC đồng dạng với ΔBKM
=>BM/BK=BC/BM
=>BM^2=BK*BC
Ta có: \(\widehat{C_1}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)
Mặt khác: \(\widehat{E_1}=\dfrac{sđ\stackrel\frown{BM}+sđ\stackrel\frown{AD}}{2}\)
\(=\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{AD}}{2}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)(Vì M là điểm chính giữa \(\stackrel\frown{AB}\) \(\Rightarrow\stackrel\frown{AM}=\stackrel\frown{BM}\))
\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)
Vì \(\widehat{E_1}+\widehat{E_2}=180^o\Rightarrow\widehat{C_1}+\widehat{E_2}=180^o\) mà 2 góc đối nhau
=> tứ giác PEDC nội tiếp