K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

chưa đủ đề bạn

27 tháng 10 2021

Nếu như góc A,b=5 thì B,c=5 và C,D=5 với D,a cũng bằng 5 

KL: các góc a,b,c,d đều bằng 5

Tui lớp 7 nên cũng không biết nhiều 

27 tháng 10 2021

chỉ cho có tứ giác thôi hả bạn

NM
2 tháng 9 2021

undefined

ta có :\(\widehat{DIC}=180^0-\widehat{CDI}-\widehat{DCI}=180^0-\frac{1}{2}\left(\widehat{ADC}+\widehat{BCD}\right)=115^o\)

Vậy \(\left(\widehat{ADC}+\widehat{BCD}\right)=150^o\Rightarrow\widehat{A}+\widehat{B}=360^0-\left(\widehat{ADC}+\widehat{BCD}\right)=210^0\)

ta có :\(\widehat{A}=\frac{50^0+210^0}{2}=130^0\)

\(\widehat{B}=\frac{210^0-50^0}{2}=80^0\)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC và △EDC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

1

Bài 1: 

a: Ta có: AB=AD

nên A nằm trên đường trung trực của BD(1)

Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

b: Xét ΔBAC và ΔDAC có 

AB=AD

AC chung

BC=DC

Do đó: ΔBAC=ΔDAC

Suy ra: \(\widehat{B}=\widehat{D}\)

=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{ C+ D}{2}\) và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

  

1
26 tháng 7 2021

a/ Gọi x là số đo góc A tứ giác ABCD.(x>0)

Số đo góc B là x+20

Số đo góc C là 3x

Số đo góc D là 3x+20

Vì tổng số đo góc trong tứ giác là 360onên ta có phương trình:

x+x+20+3x+3x+20=360

<=>8x = 320

<=> x=40(nhận)

Vậy góc A=40O

  GÓC B=60O

GÓC C=120O

GÓC D = 140O

B/ Ta có: góc A + góc D = 40o+140o=180o

Mà 2 góc này ở vị trí trong cùng phía 

Nên AB//CD 

=> Tứ giác ABCD là hình thang

Góc ngoài tại đỉnh A có số đo là:

\(180^0-75^0=105^{ }\)

Góc ngoài tại đỉnh B có số đo là:

\(180^0-90^0=90^0\)

Góc ngoài tại đỉnh C có số đo là:

\(180^0-120^0=60^0\)

Góc ngoài tại đỉnh D có số đo là:

\(180^0-75^0=105^{ }\)