K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Ta có MNPQ là hình chữ nhật tâm O => M,N,P,Q cùng thuộc (O;OM)

12 tháng 11 2021

MN,NP,PQ,QM lần lượt là đtb tam giác ABC,BCD,ACD,ABD

Do đó MN//AC;NP//BD;PQ//AC;QM//BD

Mà AC⊥BD nên MN⊥NP;PQ⊥QM

Do đó \(\widehat{MNP}+\widehat{PQM}=90^0+90^0=180^0\)

Vậy MNPQ nội tiếp (đpcm)

12 tháng 11 2021

e cảm ơn ạ

15 tháng 8 2019

Em tham khảo link dưới

chứng minh MNPQ là hình chữ nhật

=> M, N, P, Q cùng nằm trên một đường tròn.

Câu hỏi của Nàng tiên cá - Toán lớp 8 - Học toán với OnlineMath

31 tháng 10 2019

A B C D M Q N P I

gọi I là giao điểm của QM và BD

Áp dụng định lí Mê-nê-la-uyt cho \(\Delta ABD\)

\(\frac{AQ}{QD}.\frac{ID}{IB}.\frac{MB}{MA}=1\)

vì Q,M,I thẳng hàng , kết hợp với MA = QA suy ra \(\frac{MB}{QD}.\frac{ID}{IB}=1\)

Ta có : MB = NB ; DP = DQ ; PC = NC 

nên \(\frac{NB}{DP}.\frac{ID}{IB}=1\Rightarrow\frac{PC}{PD}.\frac{ID}{IB}.\frac{NB}{NC}=1\)

do đó , theo định lí Mê-nê-la-uyt thì I,N,P thẳng hàng

từ đó ta được đpcm