Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là gđ của AD và BC
Ta có: góc D + góc C = 90o
=> góc DHC=90o
dựa vào pytago làm típ nhé
a. Gọi M là trung điểm của AC
Tam giác ABC vuông tại B có BM là đường trung tuyến nên:
\(BM=\left(\frac{1}{2}\right).AC\)(tính chất tam giác vuông)
Tam giác ACD vuông tại D có DM là đường trung tuyến nên:
\(DM=\left(\frac{1}{2}\right).AC\) (tính chất tam giác vuông)
Suy ra: MA = MB = MC = MD
Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \(\left(\frac{1}{2}\right).AC\)
b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC
AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật
Kẻ đường chéo AC của tứ giác ABCD. Mình xin phép không vẽ hình nhé.
Vì các tam giác ABC, ADC lần lượt là các tam giác vuông tại B và D nên theo định lí Pi-ta-go ta có thể dễ dàng suy ra:
- \(AB^2+BC^2=AC^2\)
- \(AD^2+DC^2=AC^2\)
Từ đây, vì \(AB<AD \Rightarrow AB^2<AD^2 \Rightarrow AC^2-AB^2>AC^2-AD^2 \Rightarrow BC^2>CD^2 \iff BC>CD (đpcm)\)
http://d0.violet.vn//uploads/resources/present/3/315/354/preview.swf