Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ
EDC+ ADC= 180 độ nên B= EDC
Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC
Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E
suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12
bạn tham khảo ở đây nha có mấy cách giải đấy mình chưa học đến lướp 8 nên chỉ giúp bạn tìm được thôi https://vn.answers.yahoo.com/question/index?qid=20130616064409AAyMJ8M
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 đô.
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
=> tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => CB = CD (đpcm)
Bài 1:
a: Ta có: AB=AD
nên A nằm trên đường trung trực của BD(1)
Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
b: Xét ΔBAC và ΔDAC có
AB=AD
AC chung
BC=DC
Do đó: ΔBAC=ΔDAC
Suy ra: \(\widehat{B}=\widehat{D}\)
=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)
Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)
\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))
Do đó: \(\widehat{DAC}=\widehat{DCA}\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)
nên ΔDAC cân tại D(Định lí đảo của tam giác cân)
Suy ra: DA=DC(Hai cạnh bên)
mà DA=BC(ABCD là hình thang cân)
nên CB=CD(đpcm)
Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 độ
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
Suy ra tam giác CED cân tại C , tức là CE = CD (2)
Từ (1) và (2) => đpcm