K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c)
=> CE = CB (1)
và góc AEC = ABC = 110 độ.
xét tam giác CED có D = 70 độ
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ.
Từ đó có được góc CED = 70 độ
Suy ra tam giác CED cân tại C , tức là CE = CD (2)

Từ (1) và (2) => đpcm

3 tháng 9 2015

 

Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ 

EDC+ ADC= 180 độ nên B= EDC

Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC

Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E

suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12

 

Trên tia đối của tia DA lấy E sao cho DE= AB. Ta có B+ ADC= 180 độ 

EDC+ ADC= 180 độ nên B= EDC

Tam giác ABC= tam giác EDC (c-g-c) suy ra A1= E (1) và AC= EC

Tam giác CAE có AC= EC nên tam giác CAE cân do đó A2= E

suy ra A2= E (2). Từ (1) và (2) suy ra AC là phân giác góc AcBADE12

30 tháng 7 2015

bạn tham khảo ở đây nha có mấy cách giải đấy mình chưa học đến lướp 8 nên chỉ giúp bạn tìm được thôi https://vn.answers.yahoo.com/question/index?qid=20130616064409AAyMJ8M

4 tháng 6 2018

Trên cạnh AD bạn lấy điểm E sao cho AE = AB => hai tam giác ACE và ACB bằng nhau (c.g.c) 
=> CE = CB (1) 
và góc AEC = ABC = 110 độ. 
xét tam giác CED có D = 70 đô. 
theo tính chất góc ngoài AEC = tổng hai góc trong không kề nó. Bạn dễ dàng tính được ECD = 40 độ. 
Từ đó có được góc CED = 70 độ 
=> tam giác CED cân tại C , tức là CE = CD (2) 
Từ (1) và (2) => CB = CD (đpcm)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC và △EDC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=<C+<D2<C+<D2 và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

1

Bài 1: 

a: Ta có: AB=AD

nên A nằm trên đường trung trực của BD(1)

Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

b: Xét ΔBAC và ΔDAC có 

AB=AD

AC chung

BC=DC

Do đó: ΔBAC=ΔDAC

Suy ra: \(\widehat{B}=\widehat{D}\)

=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)

giúp mình bài này với!Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o a, Chứng minh AC là đường trung trực của BD.b, Tính góc B và góc D.Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{ C+ D}{2}\) và <AFB=<A+<B/2Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:a, △ABC...
Đọc tiếp

giúp mình bài này với!

Bài 1: Cho tứ giác ABCD có AB=AD, CB=CD, góc C =60o , góc A=100o 

a, Chứng minh AC là đường trung trực của BD.

b, Tính góc B và góc D.

Bài 3: Cho tứ giác ABCD có <B +<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E, phân giác ngoài góc A và góc B cắt tại F. Chứng minh <AEB=\(\dfrac{< C+< D}{2}\) và <AFB=<A+<B/2

Bài 4: Cho tứ giác ABCD có <B+<D=180o , CB=CD. Trên tia đối của tia DA lấy điểm E sao cho DE=AB. Chứng minh:

a, △ABC và △EDC bằng nhau

b, AC là phân giác của góc A

Bài 5: Cho tứ giác ABCD biết số đo của các góc A,B,C,D tỉ lệ thuận với 5,8,13,10.

a, Tính số đo các góc của tứ giác ABCD.

b,Kéo dài hai cạnh AB và CD cắt nhau tại E, kéo dài hai cạnh AD và BC cắt nhau tại F. Hai tia phân giác của góc AED và góc AFB cắt nhau tại O. Phân giác góc AFB cắt cạnh CD VÀ AB lần lượt là M và N. CM: O là trung điểm đoạn MN.

  

1
5 tháng 7 2017

ghsfg

Ta có: \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD)

\(\widehat{BAC}=\widehat{DAC}\)(AC là tia phân giác của \(\widehat{DAB}\))

Do đó: \(\widehat{DAC}=\widehat{DCA}\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\)(cmt)

nên ΔDAC cân tại D(Định lí đảo của tam giác cân)

Suy ra: DA=DC(Hai cạnh bên)

mà DA=BC(ABCD là hình thang cân)

nên CB=CD(đpcm)

6 tháng 9 2021

thế này nó dơi luôn vào th đặc biệt rồi bạn , giải thế kia coi như góc b và góc d vuông suy ra tứ giác kia là hình vuông không phải tứ giác lồi