Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AB=BC
nên B nằm trên đường trung trực của AC(1)
Ta có: CD=CA
nên D nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra BD là đường trung trực của AC
a: BA=BC
DC=DA
=>BD là trung trực của AC
b: Xét ΔBAD và ΔBCD có
BA=BC
DA=DC
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=(360-100-80)/2=90 độ
Bài 1:
a: Ta có: AB=AD
nên A nằm trên đường trung trực của BD(1)
Ta có: CB=CD
nên C nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
b: Xét ΔBAC và ΔDAC có
AB=AD
AC chung
BC=DC
Do đó: ΔBAC=ΔDAC
Suy ra: \(\widehat{B}=\widehat{D}\)
=>\(\widehat{B}=\widehat{D}=\dfrac{200^0}{2}=100^0\)
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
a) Ta có: BA=BC(gt)
nên B nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DC(gt)
nên D nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AC
b) Xét ΔBAD và ΔBCD có
BA=BC(gt)
BD chung
DA=DC(gt)
Do đó: ΔBAD=ΔBCD(c-c-c)
Suy ra: \(\widehat{BAD}=\widehat{BCD}\)(hai góc tương ứng)
mà \(\widehat{BAD}+\widehat{BCD}=190^0\)
nên \(\widehat{BAD}=\widehat{BCD}=\dfrac{190^0}{2}=95^0\)