K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

  • Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

  • Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

19 tháng 7 2016

ve hin hra roi nghi cach cm 

DD
23 tháng 6 2021

a) Gọi \(O\)là giao điểm \(AC\)và \(BD\)

Theo bất đẳng thức tam giác ta có: 

\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)

Cộng lại vế theo vế ta được: 

\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)

\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).

b) Theo bất đẳng thức tam giác: 

\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)

Cộng lại vế theo vế ta được:

\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).