Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm hai đường chéo AC và BD
- Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :
\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
- Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :
\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
a) Gọi \(O\)là giao điểm \(AC\)và \(BD\).
Theo bất đẳng thức tam giác ta có:
\(OA+OB>AB,OB+OC>BC,OC+OD>CD,OD+OA>AD\)
Cộng lại vế theo vế ta được:
\(2\left(OA+OB+OC+OD\right)>AB+BC+CD+DA\)
\(\Leftrightarrow AC+BD>\frac{1}{2}\left(AB+BC+CD+DA\right)\).
b) Theo bất đẳng thức tam giác:
\(AC< AB+BC,AC< CD+DA,BD< AB+DA,BD< BC+CD\)
Cộng lại vế theo vế ta được:
\(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow AC+BD< AB+BC+CD+DA\).