Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
+) Thể tích của tứ diện vuông có độ dài các cạnh góc vuông là a, b, c là: V = 1 6 a b c
+) Sử dụng công thức tỉ số thể tích Simpson
Cách giải:
S.ABC là tứ diện vuông tại đỉnh S
Đáp án A
Phương pháp:
Sử dụng tỉ số thể tích: Cho các điểm M, N, P lần lượt thuộc các cạnh SA, SB, SC của hình chóp SABC. Khi đó ta có: V S M N P V S A B C = S M S A . S N S B . S P S C
Cách giải:
Áp dụng tỉ số thể tích ta có:
Chọn D.
Phương pháp:
+ Chứng minh: O là tâm mặt cầu ngoại tiếp tứ diện CMNP (với O là tâm của hình vuông ABCD)
Đáp án là C
V S . A ' B ' C ' V S . A B C = 1 27 ⇒ V S . A ' B ' C ' = 1 27 V S . A B C ⇒ V S . A B C D = 2 V S . A ' B ' C ' = 2 27 . 1 2 V S . A B C D = V 27 .
Do
và S A ' = 1 3 S A nên
Chọn: C
Chú ý: Công thức tỉ số thể tích trên chỉ áp dụng cho hình chóp tam giác.