Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Chọn hệ trục tọa độ Oxyz như hình vẽ, ta có:
Đặt SO = x > 0. => S (0;0; x).
M , N lần lượt là trung điểm của SB và SD nên:
Theo giả thiết: AM ⊥CN
SO là trục đường tròn ngoại tiếp mặt đáy.
Gọi H là trung điểm SA . Qua H dựng đường trung trực d của SA, I= d ∩ SO .
=> Mặt cầu ngoại tiếp khối chóp S .ABCD có tâm I , bán kính R = SI.
∆ SHI đồng dạng với ∆ SOA
Vậy bán kính mặt cầu ngoại tiếp khối chóp S ABCD . là R= 3 a 10
Tam giác CED là tam giác vuông cân tại E nên trục của đường tròn đi qua ba điểm C, E, D là đường thẳng ∆ đi qua trung điểm I của đoạn thẳng CD và song song với SA.
Gọi M, N lần lượt là trung điểm của SE và SC. Ta có mặt phẳng (ABNM) là mặt phẳng trung trực của đoạn SE. Vậy tâm O của mặt cầu ngoại tiếp hình chóp S.CDE chính là giao điểm của Δ và mp(ABNM). Gọi K là trung điểm của AB thì KN // AM và do đó KN //(SAE). Ta có IK // AD nên IK // (SAE).
Vậy KN và ∆ đồng phẳng và ta có O là giao điểm cần tìm.
Chú ý rằng OIK là tam giác vuông cân, vì ∠ OKI = ∠ MAE = 45 °
Ta có OI = IK, trong đó
Vậy
Do đó, bán kính mặt cầu ngoại tiếp hình chóp S.CDE là: