Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{CB}=\overrightarrow{AD}+\overrightarrow{CB}\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\left(\overrightarrow{OE}+\overrightarrow{EA}\right)+\left(\overrightarrow{OF}+\overrightarrow{FB}\right)+\left(\overrightarrow{OE}+\overrightarrow{EC}\right)+\left(\overrightarrow{OF}+\overrightarrow{FD}\right)\)
\(=2\left(\overrightarrow{OE}+\overrightarrow{EF}\right)+\left(\overrightarrow{EA}+\overrightarrow{EC}\right)+\left(\overrightarrow{FB}+\overrightarrow{FD}\right)\)
\(=2.\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}\)
Chắc chắn là đề bài sai rồi
Vế trái là 1 đại lượng vô hướng
Vế phải là 1 đại lượng có hướng (vecto)
Hai vế không thể bằng nhau được
Vẫn như câu trước, gọi G là trọng tâm tam giác ABC
\(\Rightarrow4\overrightarrow{NG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{NG}=\frac{1}{4}\overrightarrow{DG}\)
Ta có:
\(\left(\overrightarrow{IA}+\overrightarrow{IB}\right)+\left(\overrightarrow{IC}+\overrightarrow{ID}\right)=2\overrightarrow{IE}+2\overrightarrow{IF}=2\left(\overrightarrow{IE}+\overrightarrow{IF}\right)=\overrightarrow{0}\)
Do đó:
\(T=\left|\overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}+\overrightarrow{ND}\right|\)
\(=\left|\overrightarrow{NI}+\overrightarrow{IA}+\overrightarrow{NI}+\overrightarrow{IB}+\overrightarrow{NI}+\overrightarrow{IC}+\overrightarrow{NI}+\overrightarrow{ID}\right|\)
\(=4\left|\overrightarrow{NI}\right|=4NI\)
\(\Rightarrow T_{min}\) khi \(NI_{min}\)
\(\Rightarrow\) N là hình chiếu vuông góc của I trên (P)