K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Ta có O là tâm của hình hộp chữ nhật AC'BD'.A'C'B'D nên nó là tâm của mặt cầu ngoại tiếp tứ diện ABCD. Bán kính của mặt cầu ngoại tiếp tứ diện ABCD là

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi H và K theo thứ tự là chân đường vuông góc kẻ từ O đến (ABC) và (ABD). Vì OA = OB = OC nên HA = HB = HC, tương tự KA = KB = KD. Vì ΔABD = ΔBAC nên HA = KA. Do đó OH = OK. Tương tự, ta chứng minh được khoảng cách từ O đến các mặt của tứ diện ABCD bằng nhau nên O cũng là tâm của mặt cầu nội tiếp tứ diện ABCD.

Khi đó ta có V ABCD = V OABC + V OBCD + V OCDA + V ODAB

= 4 V OABC = 4 r ' S ABC / 3

Do đó:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trong đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

Ôn tập cuối năm môn hình học 12

2 tháng 8 2017

Đáp án D

31 tháng 8 2018

Đáp án D

Phương pháp:

+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.

+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.

Cách giải:

Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC

Gọi I là trung điểm của CD ⇒ IC = ID(1)

Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD

Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)

Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC

⇒ IA = IB = IC(2)

 

Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:

21 tháng 5 2018

25 tháng 11 2018

Đáp án C

NV
18 tháng 3 2021

Gọi E là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}AE\perp BC\\DE\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(ADE\right)\)

Trong tam giác cân ADE (cân tại E), kẻ \(DH\perp AE\Rightarrow DH\perp\left(ABC\right)\)

\(\Rightarrow\widehat{DAE}=45^0\Rightarrow\Delta ADE\) vuông cân tại E 

Gọi G và G' lần lượt là trọng tâm ABC và BCD. Trong mp (ADE), qua G kẻ đường thẳng d song song DE, qua G' kẻ d' song song AE. Gọi O là giao điểm d và d' \(\Rightarrow\) O là tâm mặt cầu ngoại tiếp tứ diện

Ta có: \(AE=DE=\dfrac{a\sqrt{3}}{2}\) ; \(AG=\dfrac{2}{3}AE=\dfrac{a\sqrt{3}}{3}\) ; \(OG=OG'=\dfrac{1}{3}AE=\dfrac{a\sqrt{3}}{6}\)

\(R=OA=\sqrt{AG^2+OG^2}=\dfrac{a\sqrt{15}}{6}\)

17 tháng 12 2016

A D B C H a a

Gọi H là trung điểm BC

\(\Delta BDC\) vuông tại D nên H là tâm đường tròn ngoại tiếp \(\Delta BDC\)

\(\Delta ABC\) cân tại A nên AH vuông góc với BC

Mà (ABC) vuông góc (BDC) nên AH vuông góc với (BDC) tại H

\(\Rightarrow\) tâm mặt cầu ngoại tiếp tứ diện ABCD phải nằm trên đường thẳng AH

Chọn điểm O thuộc đường thẳng AH sao cho OA=OB thì O chính là tâm mặt cầu cần tìm

(bạn tự tính) được \(R=\frac{a^2}{b}\)

 

1 tháng 9 2018