K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2015

S=1+2+2^2+2^3+...+2^59

S=(1+2)+(2^2+2^3)+...+(2^58+2^59)

S=3+2^2(1+2)+...+2^58.(1+2)

S=3+2^2.3+...+2^58.3

S= 3.( 1+2^2+...+2^58) chia hết cho 3

S=1+2+2^2+2^3+...+2^59

S=(1+2+2^2)+(2^3+2^4+2^5)+...+(2^57+2^58+2^59)

S=7.2^3(1+2+2^2)+....+2^57(1+2+2^2)

S=7+2^3.7+...+2^57.7

S=7.(1+2^3+...+2^57) chia hết cho 7

S= 1+2+2^2+2^3+...+2^59

S=(1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+...+(2^56+2^57+2^58+2^59)

S=15+2^4(1+2+2^2+2^3)+...+2^56(1+2+2^2+2^3)

S=15+2^4.15+...+2^56.15

S=15(1+2^4+...+2^56) chia hết cho 15

chắc chắn đúng tick cho mình nhé!

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

14 tháng 12 2022

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

22 tháng 12 2021

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv

s=[1+2]+[2+2 mũ 2]+...+[2 mũ 6+2 mũ 7]

s=1 nhân [1+2]+2 nhân [1+2]+...+2 mũ 6 nhân [1+2]

s=[1+2] nhân[1+2+...+2 mũ 6

s=3 nhân [1+2+...+2 mũ 6]

=> s chia hết cho 3