K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

a) Ta có : \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}=\frac{3a}{3c}=\frac{2b}{2d}\)

\(\Rightarrow\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\)

\(\Rightarrow\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\left(đpcm\right)\)

20 tháng 7 2015

b)\(\frac{ac}{bd}=\frac{bkdk}{bd}=k.k=k^2\)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)

=> \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

20 tháng 7 2015

Đặt k ( với k khác 0 , thuộc Z ) sao cho \(\frac{a}{b}=\frac{c}{d}=k\) => \(a=kb\)  /  \(c=dk\) .

a) Thế vào \(\frac{5a-b}{3a+2b}\) , ta có \(\frac{5kb-3b}{3kb+2b}\)\(=\frac{b\left(5k-3\right)}{b\left(3k+2\right)}\)\(=\frac{5k-3}{3k+2}\)  /  \(\frac{5c-3d}{3c+2d}=\frac{5dk-3d}{3dk-2d}=\frac{d\left(5k-3\right)}{d\left(3k+2\right)}=\frac{\left(5k+3\right)}{\left(3k+2\right)}\)

=> VT = VP

 

26 tháng 2 2020

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

ta có : \(\frac{4a-3b}{a}=\frac{4bk-3b}{bk}=\frac{b\left(4k-3\right)}{bk}=\frac{4k-3}{k}\)

\(\frac{4c-3d}{c}=\frac{4dk-3d}{dk}=\frac{d\left(4k-3\right)}{dk}=\frac{4k-3}{k}\)

\(\Rightarrow\frac{4a-3b}{a}=\frac{4c-3d}{c}\)

16 tháng 8 2017

-,-'' theo trí nhớ của miu thì nok là thế nì....

a) Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\left(a;b;c;d\ne0\right)\)

\(CM:\frac{a+b}{b}=\frac{c+d}{d}\)

\(\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\Leftrightarrow\frac{a}{b}+1=\frac{c}{d}+1\)

\(\Leftrightarrow\)\(\frac{a}{b}=\frac{c}{d}\)hay theo đề bài: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

^^ làm đại khái :V ko cần suy nghĩ... chỉ là mò về kiến thức cũ (nếu có sai mong thánh thông cảm!!  :P)

16 tháng 8 2017

caj câu b bao h nghĩ xong cách làm thì mk đăng (h fai gô-tu-bét r`)

24 tháng 12 2021

giúp mình với, mai mình kiểm tra cuối kỉ rồi

3 tháng 12 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\). Ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{b^3\left(k-1\right)^3}{d^3\left(k-1\right)^3}=\frac{b^3}{d^3}\)

\(\frac{3a^2+2b^2}{3c^2+2d^2}=\frac{3\left(bk\right)^2+2b^2}{3\left(dk\right)^2+2d^2}=\frac{3b^2k^2+2b^2}{3d^2k^2+2d^2}=\frac{b^2\left(3k^2+2\right)}{d^2\left(3k^2+2\right)}=\frac{b^2}{d^2}\)

Đến đây nhìn có vẻ đề sai

3 tháng 12 2018

\(\frac{a}{b}=\frac{c}{d}=k\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)ta có:

\(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{\left(bk-b\right)^3}{\left(dk-d\right)^3}=\frac{\left[b\left(k-1\right)\right]^3}{\left[d\left(k-1\right)\right]^3}=\frac{b^3}{d^3}\)

\(\frac{2b^2+3a^2}{2d^2+3c^2}=\frac{4.b^2+9.k^2.b^2}{4.d^2+9.d^2.k^2}=\frac{b^2\left(4+k^2.9\right)}{d^2\left(4+9.k^2\right)}=\frac{b^2}{d^2}\)

\(Taco:\frac{b^3}{d^3}=\frac{b^2}{d^2}\Leftrightarrow b=d\)

20 tháng 2 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{5a}{5c}=\frac{2b}{2d}=\frac{3a-2b}{3c-2d}=\frac{5a+2b}{5c+2d}\)

\(\Rightarrow\frac{3a-2b}{5a+2b}=\frac{3c-2d}{2c+2d}\) ( đpcm )

12 tháng 8 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)

=>\(\frac{5a-3b}{5c-3d}=\frac{a}{c}=\frac{3a+2b}{3c+3d}\)

=>\(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+3d}\)

=>\(\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+3d}\)

12 tháng 8 2015

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{2b}{2d}=\frac{3a+2b}{3c+2d}\)

=> \(\frac{5a-3b}{5c-3d}=\frac{3a+2b}{3c+2d}\) ( Vì cùng bằng \(\frac{a}{c}\))

13 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Do đó : 

\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(2b=2a+a-c=3a-c\)\(\left(1\right)\)

\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(2c=2b-a+b=3b-a\)\(\left(2\right)\)

\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(2a=2c+c-b=3c-b\)\(\left(3\right)\)

Thay (1), (2) và (3) vào P ta được : 

\(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)

\(P=\frac{\left(3a-3a+c\right)\left(3b-3b+a\right)\left(3c-3c+b\right)}{2b.2c.2a}\)

\(P=\frac{abc}{8abc}=\frac{1}{8}\)

Vậy \(P=\frac{1}{8}\)

Chúc bạn học tốt ~