K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)

b, \(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) 

\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

c, \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

28 tháng 6 2016

Giả sử tất cả các tỷ lệ thức đều có nghĩa.

a)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3a}{3c}=\frac{5b}{5d}=\frac{4b}{4d}=\frac{2a+5b}{2c+5b}=\frac{3a-4b}{3c-4d}\)

\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)đpcm

b)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)đpcm

19 tháng 10 2016

GỢI Ý 

bạn có thể đặt k để tính 

hoặc bạn hoán đổi trung tỉ giải bài toán

14 tháng 11 2016

Đặt Bằng a = bk 

c = dk Rồi thay vào biểu thức nha bạn

14 tháng 11 2016

thank you

24 tháng 12 2021

giúp mình với, mai mình kiểm tra cuối kỉ rồi

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

3 tháng 11 2015

 

a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)

b/ \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

1 tháng 8 2016

Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

Ta có: \(\frac{a+c}{b+d}\)\(\frac{kb+kd}{b+d}\)=\(\frac{k\left(b+d\right)}{b+d}\)=k (1)

           \(\frac{a-c}{b-d}\)\(\frac{kb-kd}{b-d}\)=\(\frac{k\left(b-d\right)}{b-d}\)=k (2)

Từ (1) và (2) =>\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)

3 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

a) Ta có:

\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

b) Ta có:

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)