Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
a)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3a}{3c}=\frac{5b}{5d}=\frac{4b}{4d}=\frac{2a+5b}{2c+5b}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)đpcm
b)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)đpcm
GỢI Ý
bạn có thể đặt k để tính
hoặc bạn hoán đổi trung tỉ giải bài toán
a/ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{3a}{3c}=\frac{5b}{5d}=\frac{3a+5b}{3c+5d}=\frac{3a-5b}{3c-5d}\Rightarrow\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b/ \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
Ta có: \(\frac{a+c}{b+d}\)= \(\frac{kb+kd}{b+d}\)=\(\frac{k\left(b+d\right)}{b+d}\)=k (1)
\(\frac{a-c}{b-d}\)= \(\frac{kb-kd}{b-d}\)=\(\frac{k\left(b-d\right)}{b-d}\)=k (2)
Từ (1) và (2) =>\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)
a) Ta có:
\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
b) Ta có:
\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b, \(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
c, \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)