K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk, c=dk \)

Khi đó:

\(\frac{2002a+2003b}{2002a-2003b}=\frac{2002bk+2003b}{2002bk-2003b}=\frac{b(2002k+2003)}{b(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(1)\)

\(\frac{2002c+2003d}{2002c-2003d}=\frac{2002dk+2002d}{2002dk-2003d}=\frac{d(2002k+2003)}{d(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(2)\)

Từ \((1);(2)\Rightarrow \frac{2002a+2003b}{2002a-2003b}=\frac{2002c+2003d}{2002c-2003d}\)

Ta có đpcm.

23 tháng 9 2018

Xét tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Gọi giá trị chung của các tỉ số đó là k, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> \(a=k.b,c=k.d\)

Ta có :

( 1 )

= \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002kb+2003b}{2002kb-2003b}\)

= \(\dfrac{b.\left(2002k+2003\right)}{b.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)

( 2 ) \(\dfrac{2002c+2003d}{2002c-2003d}=\dfrac{2002kd+2003d}{2002kd-2003d}\)

= \(\dfrac{d.\left(2002k+2003\right)}{d.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)

Từ ( 1 ) và ( 2 ) => \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002c+2003d}{2002c-2003d}\)

4 tháng 4 2020

Ta có: \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k;c=d.k\)

Xét: \(\frac{2002a+2003b}{2002a-2003b}=\frac{2002bk+2003b}{2002bk-2003b}\)=\(\frac{k+b}{k-b}\) (1)

Mặt khác: \(\frac{2002c+2003d}{2002c-2003d}=\frac{2002dk+2003d}{2002dk-2003d}=\frac{k+d}{k-d}\) (2)

Từ (1) và (2)=> \(\frac{2002a+2003b}{2002a-2003b}=\frac{2002c+2003d}{2002c-2003d}\) (đpcm)

15 tháng 7 2017

Ta có : \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2002a}{2002c}=\frac{2003b}{2003d}=\frac{2002a+2003b}{2002c+2003d}=\frac{2002a-2003b}{2002c-2003d}\)

Suy ra : \(\frac{2002a+2003b}{2002a-2003b}=\frac{2002c+2003d}{2002c-2003d}\) (đpcm)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2-c^2}{b^2-d^2}=k^2\)

\(\dfrac{ac}{bd}=k^2\)

Do đó: \(\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

8 tháng 11 2018

ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm

8 tháng 11 2018

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(\dfrac{bz-cy}{a}=\dfrac{b.ck-c.bk}{a}=\dfrac{0}{a}=0\)(1)

\(\dfrac{cx-az}{b}=\dfrac{c.ak-a.ck}{b}=\dfrac{0}{b}=0\)(2)

\(\dfrac{ay-bz}{c}=\dfrac{a.bk-b.ak}{c}=\dfrac{0}{c}=0\)(3)

từ (1),(2) và(3) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(đpcm\right)\)

7 tháng 10 2017

1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

8 tháng 10 2017

lm cách ap dung tc day ti so = nhau

25 tháng 11 2017

A)\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)=\(\dfrac{a}{a-b}=\dfrac{c}{c-d}\) (đpcm)

7 tháng 10 2017

a/b=b/c=c/d=a+b+c/b+c+d=a mu 3+bmu 3+c mu 3/b mu 3+c mu 3+d mu 3=a/d

28 tháng 11 2017

Ta có : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)=\(\dfrac{a+b+c}{b+c+d}\)

=> \(\left(\dfrac{a}{b}\right)^3\)=\(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(1)

\(\left(\dfrac{a}{b}\right)^3\)= \(\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}\)=\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}\)=\(\dfrac{a}{d}\)(2)

Từ (1);(2)=> \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)=\(\dfrac{a}{d}\)