K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

Ta có:a/b=c/d

 <=>1 - a/b=1 - c/d 

<=>a/a - a/b=c/c - c/d

<=>a/a-b=c/c-d (đpcm)

14 tháng 4 2017

đặt a/b=c/d=k
suy ra a=bk;c=dk
suy ra a-b/a+b=bk-b/bk+b=b(k-1)/b(k+1)=k-1/k+1              (1)
c-d/c+d=dk-d/dk+d=d(k-1)/d(k+1)=k-1/k+1                        (2)
từ 1 và 2 suy ra dpcm

30 tháng 8 2020

Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)( đpcm )

30 tháng 9 2018

Sai đề rồi nha bn phải là : \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(=\frac{3a}{3c}\)

\(=\frac{3a+b}{3c+d}\)( Theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

DD
21 tháng 10 2021

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow\hept{\begin{cases}a=bt\\c=dt\end{cases}}\).

\(\frac{ac}{bd}=\frac{bt.dt}{bd}=t^2\)

\(\frac{a^2-c^2}{b^2-d^2}=\frac{\left(bt\right)^2-\left(dt\right)^2}{b^2-d^2}=\frac{t^2\left(b^2-d^2\right)}{b^2-d^2}=t^2\)

Suy ra đpcm. 

2 tháng 11 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )

Vậy ...

2 tháng 11 2019

TL :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)

=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

\(\Rightarrow\)Vế trái = Vế phải

\(\Rightarrowđpcm\)

17 tháng 10 2020

Cách 1: Sử dụng t/c dãy tỉ số bằng nhau ta được

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a-c}{b-d}=\frac{a+2c}{b+2d}\)

Cách 2: 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\) thay vào ta được:

\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)

\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

=> đpcm

17 tháng 10 2020

cách 1

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

cách 2:

đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=b.k;c=d.k\)

\(\frac{a+2c}{b+2d}=\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\)

\(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)

=> \(\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

30 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}.\)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

30 tháng 9 2018

b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)(*)

mà \(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}\)

Từ (*) \(\Rightarrow\frac{a^n-b^n}{c^n-d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)

17 tháng 7 2019

cho a/b=k (1)=>a=bk

c/d=k=>c=dk

a+c/b+d=bk+dk/ b+d=k(b+d)/ b+d=k(2)

từ 1 và 2 => đfcm

17 tháng 7 2019

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\left(ĐPCM\right)\)

11 tháng 8 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\frac{a+b}{b+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}=\frac{a}{b}\)

Phép chứng minh hoàn tất:d