K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -dCmr: a+b/b=c+d/dCâu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.Cmr: a/a+b=c/c+dCâu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)Cmr a/b=c/dCâu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 Cmr ac/bd=a^2+c^2 /b^2+d^2Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d Cmr: (a-b)^2/(c-d)^2=ab/cdCâu 6: cho tỉ lệ thức a/b=c/d...
Đọc tiếp

Câu 1 :Cho tỉ lệ thức a/b=c/d với b,c,d khác 0và c khác -d

Cmr: a+b/b=c+d/d

Câu 2: cho tỉ lệ thức a/b=c/d với b,c,d khác 0 và a khác -b,c khác -d.

Cmr: a/a+b=c/c+d

Câu 3: cho a+b/a-b=c+d/c-d(a,b,c,d khác 0 và a khác b, c khác âm dương c)

Cmr a/b=c/d

Câu 4: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 

Cmr ac/bd=a^2+c^2 /b^2+d^2

Câu 5: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và c khác d 

Cmr: (a-b)^2/(c-d)^2=ab/cd

Câu 6: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và khác-d

Cmr: (a+b)^2014/(c+d)^2014=a^2014+b^2014/c^1014+d^2014

Câu 7:cho a/c=c/d với a,b,c khác 0 

Cmr a/b=a^2+c^2/b^2+d^2

Câu 8: cho a/c=c/d với a,b,c khác 0

Cmr b-a/a=b^2-a^2/a^2+c^2

Câu 9:cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0 và a khác âm dương 5/3b; khác âm dương 5/3d khác 0

Cmr: các tỉ lệ thức sau: 3a+5b/3a-5b=3c+5d/3c-5d

Câu 10: cho tỉ lệ thức a/b=c/d với a,b,c,d khác 0

Cmr: 7a^2+5ac/7b^2-5ac=7a^2+5bd/7b^2-5bd

3
22 tháng 11 2018

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

22 tháng 11 2018

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

9 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\Leftrightarrow\frac{bk+b}{b}=\frac{dk+d}{d}\)

Xét VT \(\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\)

Xét VP \(\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ (1) và (2) -->Đpcm

b)Đặt tương tự ta có:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Leftrightarrow\frac{5bk+3b}{5bk-3b}=\frac{5dk+3d}{5dk-3d}\)

Xét VT \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-2}\left(1\right)\)

Xét VP \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) -->Đpcm

9 tháng 8 2016

Bạn xem lại đề nhé :)

1) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

2) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5}{3}.\frac{a}{b}=\frac{5}{3}.\frac{c}{d}\Rightarrow\frac{5a}{3b}-1=\frac{5c}{3d}-1\Rightarrow\frac{5a-3b}{3b}=\frac{5c-3d}{3d}\)

\(\Rightarrow\frac{3b}{5a-3b}=\frac{3d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}=\frac{6d}{5c-3d}\Rightarrow\frac{6b}{5a-3b}+1=\frac{6d}{5c-3d}+1\)

\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

9 tháng 8 2016

1) Vì a/b = c/d

=> a/b + 1 = c/d + 1

=> a + b/b = c + d/d (đpcm)

2) Vì a/b = c/d

=> a/c = b/d

=> 5a/5c = 3b/3d = 5a + 3b/5c + 3d = 5a - 3b/5c - 3d ( theo tc DTSBN )

=> 5a + 3b/5a - 3b = 5c + 3d/5c - 3d

9 tháng 8 2016

1,a/b=c/d

=>\(\frac{a}{b}+1=\frac{c}{d}+1\)

=>\(\frac{a+b}{b}=\frac{c+d}{d}\)

8 tháng 8 2015

Ta có :a/b = c/d suy ra a/c = b/d

Aps dụng tính chất dãy tính chất tỉ số bừng nhau

a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d

 

 

3 tháng 2 2016

ti le thuc nay yeu cau lam j ban

3 tháng 2 2016

ti le thuc nay yeu cau ta lam j ban

6 tháng 1 2016

vì chỉ khi c=0 thì biểu thức trên mới hợp lệ

4 tháng 10 2017

\(\frac{a+b}{b}=1\frac{a}{b}\)

\(\frac{c+d}{d}=1\frac{c}{d}\)

Vì \(\frac{c}{d}=\frac{a}{b}\)nên\(1\frac{c}{d}=1\frac{a}{b}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)

\(\RightarrowĐPCM\) 

4 tháng 10 2017

\({a \over b}={c \over d} => ad=bc \)

\({a+b \over b}={c+d \over d} \)  chỉ khi (a+b)d = (c+d)b <=> ad+bd=bc+bd mà ad=bc => ad+bd=bc+bd => \({a+b \over b}={c+d \over d}\)

mấy câu sau làm tương tự chủ yếu là nhân chéo

26 tháng 10 2015

ta có :\(\frac{a}{b}=\frac{c}{d}->\frac{a}{c}=\frac{b}{d}\)

áp dụng t/c của dãy t/s = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}->\frac{a}{c}=\frac{a+c}{b+d}=\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)