Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A
1) -Ta có: \(\widehat{MBD}=\widehat{ACB}\) (△ABC cân tại A) và \(\widehat{ACB}=\widehat{NCE}\) (đối đỉnh).
\(\Rightarrow\widehat{MBD}=\widehat{NCE}\)
-Xét △MDB và △NEC có:
\(\widehat{MBD}=\widehat{NCE}\) (cmt)
\(BD=CE\)
\(\widehat{MDB}=\widehat{NEC}=90^0\)
\(\Rightarrow\)△MDB=△NEC (g-c-g).
\(\Rightarrow DM=EN\) (2 cạnh tương ứng).
2) -Ta có: DM⊥BC tại D, EN⊥BC tại E nên DM//EN
-Xét △EMN và △DNM có:
\(DM=EN\) (cmt).
\(\widehat{DMN}=\widehat{ENM}\) (DM//EN và so le trong).
MN là cạnh chung.
\(\Rightarrow\)△EMN=△DNM (c-g-c).
\(\Rightarrow\widehat{EMN}=\widehat{DNM}\) (2 góc tương ứng) nên ME//DN.
3) -Có điểm I rồi kẻ thêm điểm I nữa hả bạn?
3) -Mình nói tóm tắt:
-Bạn chứng minh AK⊥BC tại K rồi từ đó chứng minh △OKB=△OKC (c-g-c) suy ra OB=OC.
-Bạn chứng minh △IDM=△INE (g-c-g) từ đó suy ra DI=IN và góc OKB, góc OKC là 2 góc vuông.
-Bạn chứng minh △OIM=△OIN(c-g-c) suy ra OM=ON
-Bạn chứng minh △OBM=△OCN (c-c-c) suy ra góc OBM= góc OCN.
-Bạn chứng minh △OAB=△OAC (c-c-c) suy ra góc OBM=góc OCA.
Suy ra góc OCN=góc OCA mà 2 góc này là 2 góc kề bù nên cùng bằng 900.
-\(S_{AOC}=\dfrac{1}{2}AC.OC\)
\(S_{AOC}=S_{AKC}+S_{OKC}=\dfrac{1}{2}AK.KC+\dfrac{1}{2}OK.KC=\dfrac{1}{2}KC\left(AK+OK\right)=\dfrac{1}{2}KC.OA\)
\(\Rightarrow AC.OC=CK.OA\)
\(\Rightarrow\dfrac{AC^2}{CK^2}=\dfrac{OA^2}{OC^2}=\dfrac{OA^2-AC^2}{OC^2-CK^2}=\dfrac{OC^2}{OK^2}\)
\(\Rightarrow\dfrac{AC}{CK}=\dfrac{OC}{OK}\)
\(\Rightarrow\dfrac{AC}{OC}=\dfrac{CK}{OK}\)
\(\Rightarrow\dfrac{CK.OC}{OK}=AC\)
\(\Rightarrow\dfrac{OK}{CK.OC}=\dfrac{1}{AC}\)
\(\Rightarrow\dfrac{OK^2}{CK^2.OC^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{OC^2-CK^2}{OC^2.CK^2}=\dfrac{1}{AC^2}\)
\(\Rightarrow\dfrac{1}{CK^2}-\dfrac{1}{OC^2}=\dfrac{1}{AC^2}\)
bạn tự vẽ hình nha
a, xét tg BMD và tg CNE có:
góc BMD=góc CNE( =90đ)
BD=CE(gt)
góc b= góc C(vì tg ABC cân tại A)
=>tg BMD=tg CNE(cạnh huyền_ góc nhọn)
=>BM=CN( 2 cạnh tương ứng)
ta có AM+BM=AB
AN+CN=AC
mà BM=CN(cmt), AB=AC(vì tg ABC cân tại a)
nên AM=AN
b, có góc MDB=góc EDK( 2 góc đối đỉnh) và góc NEC= góc DEK( 2 góc đối đỉnh)
mà góc MDB= góc NEC( 2 góc tương ứng của tgBMD=tgCNE)
=>góc EDK=góc DEK
=> tg DKE cân tại K (1)
có tg ABC cân tại A=> B=C=(180đ-120đ)/2= 30đ
xét tg BMD vuông tại M có:
góc B+ góc MDB=90đ(đl tổng 3 góc trog tg vuông)
hay 30đ+MDB=90đ
=> góc MDB= 90đ-30đ=60đ
mà góc MDB= góc EDK(cmt)
=> góc EDK=60đ (2)
Từ (1) và (2) => tg DKE đều