Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}=90^0-\widehat{ACB}=90^0-30^0\)
hay \(\widehat{ABC}=60^0\)
Ta có: ΔAHB vuông tại A(AH⊥BC)
nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-60^0=30^0\)
Ta có: tia AH nằm giữa hai tia AB,AC
nên \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)
hay \(30^0+\widehat{CAH}=90^0\)
\(\Leftrightarrow\widehat{CAH}=60^0\)
Ta có: AD là tia phân giác của \(\widehat{CAH}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{CAH}}{2}=\dfrac{60^0}{2}=30^0\)
Vậy: \(\widehat{ABC}=60^0\); \(\widehat{DAC}=30^0\)
b) Xét ΔADH và ΔADE có
AH=AE(gt)
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
AD chung
Do đó: ΔADH=ΔADE(c-g-c)
⇒\(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)
mà \(\widehat{AHD}=90^0\)(AH⊥HD)
nên \(\widehat{AED}=90^0\)
hay DE⊥AC(đpcm)
c) Ta có: ΔAHD=ΔAED(cmt)
nên HD=ED(hai cạnh tương ứng)
Xét ΔFHD vuông tại H và ΔCED vuông tại E có
FH=CE(gt)
HD=ED(cmt)
Do đó: ΔFHD=ΔCED(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{FDH}=\widehat{CDE}\)(hai góc tương ứng)
mà \(\widehat{CDE}+\widehat{HDE}=180^0\)(hai góc kề bù)
nên \(\widehat{FDH}+\widehat{EDH}=180^0\)
⇒\(\widehat{FDE}=180^0\)
hay F,D,E thẳng hàng(đpcm)
a: Xét ΔABD vuông tại A và ΔABE vuông tại A có
AB chung
AD=AE
=>ΔABD=ΔABE
=>BD=BE
=>ΔBED cân tại B
mà góc BED=60 độ
nên ΔBED đều
c: góc DBC=góc DBA+góc CBA
=30+60=90 độ
=>BD vuông góc BC
b: Sửa đề: Cm EB=EC
Xét ΔEBC có góc EBC=góc ECB
nên ΔEBC cân tại E
=>EB=EC
1/ Xét tg vuông BEA và tg vuông BEM có
BE chung; \(\widehat{ABE}=\widehat{MBE}\Rightarrow\Delta BEA=\Delta BEM\) (Hai tg vuông có cạnh huyền và 1 góc nhọn bằng nhau)
2/
\(\Delta BEA=\Delta BEM\Rightarrow BA=BM\) => tg BAM cân tại B \(\Rightarrow BE\perp AM\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
3/ Xét tg vuông AEN và tg vuông MEC có
\(\Delta BEA=\Delta BEM\Rightarrow AE=ME\)
\(\widehat{AEN}=\widehat{MEC}\) (góc đối đỉnh)
\(\Rightarrow\Delta AEN=\Delta MEC\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) \(\Rightarrow AN=MC\)
4/ Ta có
BA=BM; AN=MC (cmt) => BA+AN=BM+MC => BN=BC => tg BNC cân tại B
Mà \(\widehat{ABE}=\widehat{MBE}\)
\(\Rightarrow BE\perp NC\) (trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)
Ta có \(BE\perp AM\left(cmt\right)\)
=> AM // NC (cùng vuông góc với BE)
Câu a tam giác BDE = 2 lần tam giác ABD rồi, không = nhau bạn xem lại đề: )
b
Có \(\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o=\widehat{EBC}\)
=> Tam giác BEC cân tại E
=> BE = EC
c
Có \(\widehat{DBC}=\widehat{DBE}+\widehat{EBC}=60^o+30^o=90^o\Rightarrow DB\perp BC\)