Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)
a)xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB(=90)
góc B chung
=>tam giác ABC đồng dạng vs t.giác HBA(gg)
b)CMTT có tam giác ABC đồng dạng t.giác HAC
=>t.giác HBA đồng dạng t.giác HAC
=>AH/BH=HC/AH
=>AH^2=BH.CH
c)+)xét tam giác BAD và tam giác BHI có:
BAD=BHI=90
ABD=HBI(BD là phân giác ABC)
=>T.giác BAD đồng dạng vs tam giac BHI(g.g)
=>AB/BH=AD/HI (1)
+)Tam giác ABC đồng dạng tam giac HBA ( CMT)
=>AB/BH=BC/AB (2)
+)(1);(2)=>AD/HI=BC/AB
Mà có CD/AD=BC/AB(BD là phân giác ABC)
=>AD/HI=CD/AD=>AD^2=HI.CD
a)Xét tg AHE. BHD có:
góc E=D=90¤
ggóc AHE=BHD (2 góc đối đỉnh)
suy ra 2 t giác đồng dạng
a: XétΔABE vuông tại E và ΔCBF vuông tại F có
\(\widehat{ABE}=\widehat{CBF}\)
Do đó: ΔABE\(\sim\)ΔCBF
Suy ra: AB/CB=BE/BF(2)
b: Xét ΔBAC có BD là phân giác
nên BA/BC=DA/DC(1)
Từ (1) và (2) suy ra DA/DC=BE/BF
hay \(AD\cdot BF=BE\cdot DC\)
cho t.giác ABC vuông tại A ( AB < AC ), đường cao AH (H thuộc BC), trên tia HC lấy điểm K sao cho HK = AH. đường thẳng vuông góc với BC tại K cắt AC tại I
a) c.minh t.giác IKC đồng dạng vs t.giác BAC.
b)c.minh góc AKC = góc BIC.
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. chứng minh BD\DC = HK\HC.
Sửa đề: ΔABC vuông tại A
a) Xét ΔDAB vuông tại D và ΔACB vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔDAB\(\sim\)ΔACB(g-g)
b) Xét ΔABC có
BE là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(Định lí đường phân giác của tam giác)(1)
Ta có: ΔDAB\(\sim\)ΔACB(cmt)
nên \(\dfrac{AB}{BC}=\dfrac{BD}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(2)
Từ (1) và (2) suy ra \(\dfrac{AE}{EC}=\dfrac{BD}{AB}\)
hay \(AE\cdot AB=BD\cdot EC\)(đpcm)
Tgiac AEC và tgiac AHB có góc BAC chung, góc aEC= AHB
=> Tgiac AEC~tgiac AHB(gg)
Tgiac AFC và tgiac CHB có BHC=AFC=90•
Góc FAC=HCB do AD//BC
=> Tg AFC ~tg CHB(gg)
=> BC/CH=CA/AF
Mà BC=AD( ABCD là hbh)
=> AD/CH=CA/AF=> AD.AF=CH.AC
a)t giác ABE đồng dạng với t giác ACF:
+) \(\widehat{AEB}=\widehat{AFC}=90\)độ
+) \(\widehat{BAE}=\widehat{CAF}\)
vậy t giác ABE đồng dạng với t giác ACF ( g.g)
b)t giác CFD đồng dạng với t giác BED:
+) \(\widehat{CFD}=\widehat{BED}=90\)độ
+) \(\widehat{BDE}=\widehat{CDF}\)(đối đỉnh)
vậy t giác CFD đồng dạng với t giác BED ( g.g)
suy ra: \(\frac{DC}{BD}=\frac{DF}{DE}\)hay DB.DF=DC.DE
c) vì t giác ABE đồng dạng với t giác ACF(câu a)
suy ra \(\frac{AE}{ÀF}=\frac{BE}{CF}\)(1)
vì t giác CFD đồng dạng với BED
suy ra \(\frac{DB}{DC}=\frac{BE}{CF}\)(2)
từ 1,2 suy ra \(\frac{AE}{ÀF}=\frac{DB}{DC}\)hay DB.AF=DC.AE
( k mình nha )