Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo yêu cầu thì tớ chỉ giúp câu d thôi nhé, còn hình và 3 phần trên bạn tự làm, tự vẽ nha!
d, Xét \(\Delta MBH\) vuông tại M
=> BH2 = MB2 + MH2 (đ/lí Pytago)
=> MH2 = BH2 - MB2 (1)
Xét \(\Delta AMH\) vuông tại M
=> AH2 = AM2 + MH2 (đ/lí Pytago)
=> MH2 = AH2 - AM2 (2)
Từ (1) và (2) => BH2 - MB2 = AH2 - AM2
<=> AH2 + BM2 = BH2 + AM2
mà AM = AN (cm b)
=> AH2 + BM2 = BH2 + AN2 (đpcm)
Bạn tự vẽ hình nha !
a, Xét tam giác vuông ADI và tam giác vuông AHI có :
AI là cạnh chung
ID = IH ( I là trung điểm của DH )
=> Tam giác vuông ADI = tam giác vuông AHI ( 2 cạnh góc vuông )
b, Xét tam giác vuông BIH và tam giác vuông BID có :
BI là cạnh chung
IH = ID ( I là trung điểm của DH )
=> Tam giác vuông BIH = tam giác vuông BID ( 2 cạnh góc vuông )
=> Góc BHI = góc BDI (2 góc tương ứng )
Có: Góc AHI = góc ADI ( tam giác vuông AIH = tam giác vuông AID )
=> Góc BHI + góc AHI = Góc BDI + góc ADI
mà góc BHI + góc AHI = 90 độ ( bằng góc AHB )
=> Góc BDI + góc ADI = 90 độ
=> Góc ADB = 90 độ
=> AD _|_ BD
Sorry ! Đề những phần tiếp theo tớ không hiểu lắm !
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
a)Vì ABC cân tại A (gt) => AB = AC (TC Tg cân)
BH vg góc AC (gt) => ^AHB=^CHB = 90o
CK vg góc AB (gt) => ^AKC=^BKC = 90o
Xét tg ABH và tg ACK:
^AHB = ^AKC (= 90)
^A chung
AB = AC (cmt)
=> tg ABH = tg ACK (ch - gn)
b) Xét tg BKC và tg CHB :
^BKC = ^CHB (=90)
BC chung
^B = ^C (tg ABC cân tại A)
=> tg BKC và tg CHB (ch - gn)
=> ^KCB = ^HBC (2 góc tương ứng)
hay ^OBC = ^OCB
=> tg OBC cân tại O (đpcm)
c) tg BKC và tg CHB (cmt) => BK = CH (2 cạnh tương ứng)
Ta có: ^B = ^ABH + ^CBH
^C = ^ACK + ^BCK
Mà ^B = ^C (tg ABC cân tại A); ^CBH = ^BCK(cmt)
=> ^ABH = ^ACK
Xét tg OBK và tgOCK:
^BKO = ^CHO (=90)
BK = CH (cmt)
^KBO = ^HCO (^ABH = ^ACK)
=> tg OBK = tg OCK (gcg)
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK(cạnh huyền-góc nhọn)
b) Ta có: ΔABH=ΔACK(cmt)
nên \(\widehat{ABH}=\widehat{ACK}\)(hai góc tương ứng)
Ta có: \(\widehat{ABH}+\widehat{CBH}=\widehat{ABC}\)(tia BH nằm giữa hai tia BA,BC)
\(\widehat{ACK}+\widehat{BCK}=\widehat{ACB}\)(tia CK nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy trong ΔABC cân tại A)
và \(\widehat{ABH}=\widehat{ACK}\)(cmt)
nên \(\widehat{CBH}=\widehat{BCK}\)
hay \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
c)
Sửa đề: ΔOBK=ΔOCH
Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC(ΔOBC cân tại O)
\(\widehat{OBK}=\widehat{OCH}\)(cmt)
Do đó: ΔOBK=ΔOCH(cạnh huyền-góc nhọn)
(Chừng nào vẽ hình mới đẹp? -.-)
a) Ta có: \(\Delta ABC\)cân tại \(A\Rightarrow AH\)vừa là đường cao, vừa là phân giác, (vừa là trung tuyến (*))
\(\Rightarrow\widehat{BAH}=\widehat{CAH}\)
b) Từ (*) ở câu a \(\Rightarrow BH=CH=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)
Xét \(\Delta ACH\)vuông tại \(H\)có:
\(AH^2+HC^2=AC^2\left(pytago\right)\)
\(3^2+4^2=AC^2\)( Vì \(3^2+4^2=25\))
\(\Rightarrow AC=\sqrt{25}=5\left(cm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(AH\): chung
\(\widehat{AEH}=\widehat{ADH}=90\)độ
\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)(hai cạnh tương ứng)
d) Từ chứng minh câu c \(\Rightarrow HE=HD\)(hai cạnh tương ứng)
Ta có: \(\hept{\begin{cases}HE=HD\left(cmt\right)\\AE=AD\left(cmt\right)\end{cases}}\Rightarrow AH\)là đường trung trực của \(ED\)
\(\Rightarrow AH⊥ED\)tại trung điểm \(ED\)(Nhưng dẹp vụ trung điểm đó đi, cần cái vuông góc thôi!)
Ta lại có: \(\hept{\begin{cases}ED⊥AH\left(cmt\right)\\BC⊥AH\left(gt\right)\end{cases}}\Rightarrow ED\)// \(BC\left(đpcm\right)\)
Ps: Check lại coi có bị gì không nha bạn