Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5*4=20 cặp
c)cái này tôi suy đoán : 1,5;5,1;2,4;4,2
=>có 4 cặp
Lập số có 5 chữ số bất kì (các chữ số khác nhau): \(5!-4!\) số
Xếp 1 và 2 cạnh nhau: \(2!=2\) cách
Coi cặp 12 như một số, hoàn vị với 3 chữ số còn lại (sẽ tạo thành số có 5 chữ số sao cho 1 và 2 cạnh nhau): \(4!-3!\) số
\(\Rightarrow\) Có \(2.\left(4!-3!\right)\) số mà 1 và 2 cạnh nhau
\(\Rightarrow\) Số số để 1 và 2 không liền nhau:
\(5!-4!-2.\left(4!-3!\right)=60\) số
Khi các hệ số tùy ý; ta cần thực hiện các bước sau:
Chọn hệ số a: có 4 cách chọn hệ số a vì a≠0.
Chọn hệ số b: có 5 cách chọn hệ số b.
Chọn hệ số c: có 5 cách chọn hệ số c
Chọn hệ số d: có 5 cách chọn hệ số d.
Theo quy tắc nhân có: 4.5.5.5=500 đa thức.
Chọn C.
Khi các hệ số khác nhau:
- Có 4 cách chọn hệ số a (a≠0).
- Khi đã chọn a, có 4 cách chọn b.
- Khi đã chọn a và b, có 3 cách chọn c.
- Khi đã chọn a, b và c có 2 cách chọn d.
Theo quy tắc nhân ta có. 4.4.3.2=96 đa thức.
Chọn B.
Chọn D
Gọi số có 6 chữ số có dạng
Từ 10 chữ số {0;1;2;3;4;5;6;7;8;9}, ta lập được 9. A 9 5 số có 6 chữ số đôi một khác nhau.
Lấy ngẫu nhiên một số từ tập X
Gọi A là biến cố “Lấy một số thuộc X luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ ”.
Ta coi 3 vị trí liền nhau trong X là một phần tử Z, sắp xếp 3 chữ số khác nhau trong Z thỏa mãn biến cố :
+ Số thứ nhất là số lẻ thuộc Y có 3 cách chọn.
+ Số thứ hai là số chẵn thuộc Y có 2 cách chọn.
+ Số thứ ba là số lẻ thuộc Y có 2 cách chọn.
Áp dụng quy tắc nhân ta có 12 cách sắp xếp phần tử .
Trường hợp 1: Số có 6 chữ số có dạng
+) z có 12 cách chọn.
+) Xếp 5 chữ số còn lại khác các số tập Y vào 3 vị trí
Áp dụng quy tắc nhân, ta lập được
Trường hợp2: Số có 6 chữ số có dạng
+) a 1 có 4 cách chọn
+) Xếp z vào 3 vị trí, z có 12 cách chọn nên có 36 cách sắp xếp.
+) Xếp 4chữ số còn lại vào 2 vị trí
Áp dụng quy tắc nhân, ta lập được 4.36. A 4 2 = 1728 số có 6 chữ số đôi một khác nhau thỏa mãn.
Vậy ta có tất cả (số) thoả mãn yêu cầu bài toán.
Số cặp sắp thứ tự như vậy là:
\(\dfrac{A^2_{100}}{2}=4950\)
Tại vì là cái này giống như lấy 1 cặp 2 số ra rồi sắp tăng dần
Cho mình hỏi nếu đề bài không yêu cầu x>y thì x, y có thể giống nhau đc ko ạ Nguyễn Lê Phước Thịnh? Ví dụ như (x;y)=(1;1),(2;2),....(100;100)