K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A D B C E H K I

Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C

mà góc ABC + góc ABD = 1800, góc ACB +  góc ACE = 1800

suy ra góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)

suy ra tam giác ABD =  tam giác ACE (c.g.c)    (*)

suy ra góc DAB=góc EAC (hai góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông ACK

có AB=AC (CMT), góc DAB=góc EAC (CMT)

suy ra tam giác  AHB = tam giác ACK ( cạnh huyền-góc nhọn)  (1)

b) Tư (1) suy ra AH=AK (hai cạnh tương ứng)  (2)

Xét tam giác vuông AHI và tam giác vuông AKI

có AI chung, AH=AK (CMT)

suy ra  tam giác  AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)

suy ra góc HAI=góc KAI

suy ra AI là tia phân giác của góc DAE

c) Từ (2) suy ra tam giác AHK cân tại A

suy ra góc AHK = góc AKH  (3)

tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)

 Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2   (5)

Từ (*) suy ra tam giác ADE cân tại A

suy ra góc ADE = góc AED  (6)

tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)

 Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2  (8)

Từ (5) và (8) suy ra góc ADE = góc AHK

mà góc ADE đồng vị với góc AHK

suy ra HK//DE

29 tháng 2 2020

Phần a là chứng minh 2 tam giác ABH = ACK à bạn ?

2 tháng 5 2021

Hình tự vẽ nha bạn

a) Xét \(\Delta AHB\)và \(\Delta AKC\)có:

     \(\hept{\begin{cases}\widehat{A}:chung\\AB=AC\left(gt\right)\\\widehat{AHB}=\widehat{AKC}\left(gt\right)\end{cases}}\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(ch-gn\right)\)

=>AH=AK ( 2 cạnh tương ứng) -đpcm

b) Xét \(\Delta AKI\)và \(\Delta AHI\)có:

 \(\hept{\begin{cases}AK=AH\\\widehat{AKI}=\widehat{AHI}\\AI:chung\end{cases}}\)

\(\Rightarrow\Delta AKI=\Delta AHI\left(ch-cgv\right)\)

\(\Rightarrow\widehat{IAK}=\widehat{IAH}\)( 2 góc tương ứng)

=> AI là ti phân giác góc KAH

Xét \(\Delta KAH\)cân tại A ( do AH=AK ) có AI là tia phân giác ứng cạnh KH

=> AI đồng thời là đường trung trực của cạnh KH (t/c) -đpcm

c) Kẻ CM \(\perp\)BE

Xét tứ giác BKCM có:

   \(\hept{\begin{cases}\widehat{CKB}=90^0\\\widehat{KBM}=90^0\\\widehat{BMC}=90^0\end{cases}}\)

=> tứ giác BKCM là hình chữ nhật (dấu hiệu nhận biết)

=> BK=CM (t/c) (1)

Dễ dàng chứng minh đc: BK=CH (2)

Từ (1) và (2) có : CM=CH

Xét \(\Delta BHC\)và \(\Delta BMC\)có:

\(\hept{\begin{cases}CH=CM\\\widehat{BHC}=\widehat{BMC}\\CB:chung\end{cases}}\)

=> \(\Delta BHC=BMC\left(ch-cgv\right)\)

=> \(\widehat{CBH}=\widehat{CBM}\)(2 góc tương ứng)

=> BC là tia phân giác góc HBM

hay BC là tia phân giác HBE -đpcm

Chúc bạn học tốt!

2 tháng 5 2021

d) Xét tam giác CME vuông tại M có CE là cạnh huyền

=>CE>CM (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà CH=CM do \(\Delta CBH=\Delta CBM\)

=>CE>CH

16 tháng 2 2022

kkkkkkkkkkkkkkkk

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E  BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

23 tháng 3 2018

giúp mình với

14 tháng 4 2018

Bạn biết câu này rồi đúng ko, bạn giúp mình với mik cũng đang cần gấp câu này cụ thể là câu c