Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: BD//CH vì cùng vuông góc với AB; BH//CD vì cùng vuông góc với AC
b, Ta có I là trung điểm của BC => I là trung điểm HD
c, Ta có OI là đường trung bình ∆AHD => AH = 2OI
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
a) Ta có:
\(CD\perp AC\)(góc nội tiếp chắn nửa đường tròn)
Và \(BH\perp AC\)(do H là trực tâm tam giác ABC)
Suy ra CD // BH. (1)
Lại có:
\(BD\perp AB\)(góc nội tiếp chắn nửa đường tròn)
Và \(CH\perp AB\)(do H là trực tâm tam giác ABC)
Nên BD // CH. (2)
Từ (1) và (2) suy ra tứ giác BHCD là hình bình hành.
b) Vì tứ giác BHCD là hình bình hành nên BC và HD cắt nhau tại trung điểm của mỗi đoạn. Mà I là trung điểm của BC nên I là trung điểm của HD. Suy ra, I, H, D thẳng hàng.(đpcm)
c) Xét tam giác AHD có:
O là trung điểm của AD, I là trung điểm của HD nên AH = 2OI(tính chất đường trung bình trong tam giác)(đpcm)
Ta có:
\(AH^2+BC^2=4OI^2+4BI^2=4OB^2=4R^2\)(đpcm)
a: Xét ΔABC có
H là trực tâm
nên CH\(\perp AB\left(1\right)\) và BH\(\perp AC\left(3\right)\)
Xét \(\left(O\right)\) có
ΔABD nội tiếp đường tròn
AD là đường kính
Do đó: ΔBDA vuông tại B
hay BD\(\perp AB\left(2\right)\)
Xét \(\left(O\right)\) có
ΔACD nội tiếp đường tròn
AD là đường kính
Do đó: ΔACD vuông tại C
hay CD\(\perp AC\left(4\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD//CH
Từ \(\left(3\right),\left(4\right)\) suy ra CD//BH
Xét tứ giác BHCD có
BD//CH
CD//BH
Do đó: BHCD là hình bình hành