K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

GIẢI NHƯ THẾ NÀO HẢ BẠN?

 

9 tháng 1 2016

các bạn giúp mình với mình vừa mới học dạng này, làm đầy đủ mình tick cho

5 tháng 9 2019

A B C N M F E 1 H

Kéo dài MN cắt AC tại F

Ta có: \(\hept{\begin{cases}AB//NF\\AB\perp AC\end{cases}\Rightarrow NF\perp}AC\)

Xét tam giác ACN có:

 \(\hept{\begin{cases}NF\perp AC\left(cmt\right)\\AH\perp NC\left(gt\right)\end{cases}}\)

Mà M là giao điểm của NF và AH 

\(\Rightarrow M\)là trực tâm của tam giác ACN

\(\Rightarrow EC\perp AN\)( tc )

\(\Rightarrow\widehat{AEC}=90^0\)

\(\Rightarrow\Delta AEC\)vuông tại E

Vì AH vuông góc với BC mà tam giác ABC cân tại A (gt)

Nên AH vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\)H là trung điểm của BC

\(\Rightarrow BH=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\)

Áp dụng định lý Pi-ta-go vào tam giác ABH vuông tại H có:

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)

Hay \(AH^2=12^2-5^2\)

\(\Rightarrow AH^2=144-25\)

\(\Rightarrow AH^2=119\)

\(\Rightarrow AH=\sqrt{119}\)

18 tháng 12 2016

A) Xét tam giác ABH và tam giác ADH có :

HB=HD ( giả thiết)

HA ( cạnh chung)

góc DHA=góc BHA=90độ

suy ra tam giác ABH=tam giác ADH ( C-G-C)

B)Xét tam giác EHD và tam giác BHAcó:

HE=HA( GT)

góc AHB=góc DHE(hai góc đối đỉnh )

HD=HB( GT)

vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)

vậy BA=ED( hai cạnh tương ứng)

C)ta gọi giao điểm của ED và AC là I

ta có góc IEA = góc EAB( hai góc tương ứng)

mà hai góc này lại ở

 vị trí sole  trong ở hai đoạn thẳng BA và EI

suy ra :  BAsong song với EI

mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ

vậy EI vuong góc với AC

29 tháng 3 2018

Gọi G là giao điểm của BE và AC (*)

Ta có: tam giác ABC vuông tại A (gt) =>AC vuông góc với AB tại A 

       => GC vuông góc với AB tại A 

       => GC là đường cao thứ nhất của tam giác GBC  (1)

Ta có: BE vuông góc với CD tại E => BE vuông góc EC tại E

=> CE là đường cao thứ 2 của tam giác GBC  (2)

Ta có BA cắt CE tại D  (3)

Từ (1), (2), (3) ta suy ra D là trực tâm của tam giác GBC

=> GD thuộc đường cao thứ 3 của tam giác GBC.

=> GD vuông góc với BC 

Ta có AH vuông góc với BC tại H (vì AH là đường cao của tam giác ABC) ; DF song song với AH.

=> DF vuông góc với BC tại F 

=> G,D,F thẳng hàng

=> DF đi qua G (**)

Từ (*), (**) ta suy ra: CA, BE, DF đồng quy tại G (đpcm)

bài 1: a) trong tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)

                                   hay góc A + 700 + 300 = 1800

                         => góc A = 1700