K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

A B C M N D

Vẽ tam giác đều AMN trên nửa mặt phẳng bờ AM chứa điểm B.Kẻ BD vuông góc với AM tại D.

Ta có:\(\widehat{NAB}=\widehat{NAM}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\widehat{MAC}=\widehat{BAC}-\widehat{BAM}=60^0-\widehat{BAM}\)

\(\Rightarrow\widehat{NAB}=\widehat{MAC}\)

Xét \(\Delta\)AMC và \(\Delta\)ANB có:AM=AN,^NAB=^MAC,AB=AC => \(\Delta AMC=\Delta ANB\left(c-g-c\right)\Rightarrow\hept{\begin{cases}AN=AM=MN=1\\BN=CM=\sqrt{3}\end{cases}}\)

Ta có:\(BN^2+MN^2=\sqrt{3}+1^2=4=BM^2\)

\(\Rightarrow\Delta BNM\) vuông tại N.

\(\Rightarrow\widehat{BNM}=90^0,BM=2MN\)

\(\Rightarrow\widehat{NMB}=60^0\Rightarrow\widehat{AMB}=120^0\)

Mà \(\Delta ANB=\Delta AMC\Rightarrow\widehat{ANM}=\widehat{AMC}=60^0+60^0=120^0\)(^AMC có khác gì ^CMA đâu má)

Ta có:\(\widehat{BMD}=180^0-\widehat{BMA}=180^0-120^0=60^0\)

\(\Rightarrow\widehat{MBD}=30^0\Rightarrow MB=2MD\Rightarrow MD=1\Rightarrow AD=2\)

Xét \(\Delta\)BNM và \(\Delta\)BDM có:BM  là cạnh chung,^NBM=^DBM(cùng bằng 30 độ) => \(\Delta BNM=\Delta BDM\left(ch-gn\right)\)

\(\Rightarrow BN=BD=\sqrt{3}\)

Áp dụng định lý Pythagore vào tam giác vuông ABD ta được:\(AB^2=AD^2+BD^2=2^2+\sqrt{3}^2=4+3=7\)

\(\Rightarrow AB=\sqrt{7}\).Mà \(\Delta\)ABC đều nên \(AB=BC=CA=\sqrt{7}\)

10 tháng 7 2019

Em tham khảo link này nhé!

Câu hỏi của channel Anhthư - Toán lớp 7 - Học toán với OnlineMath

4 tháng 1 2017

câu trả lời ở trang http://h.vn/hoi-dap/question/28112.html

hoặc đánh bài này trên mạng tìm xem câu hỏi của Lee Min Ho

Nhớ k nhé

mk ko bt lm câu b nha ~ xl

c,Vẽ tam giác đều AMD ( D thuộc nửa mặt phẳng bờ AM không chứa C)(Bạn tự vẽ hình nha, dễ như ăn kẹo ấy)

=> DM = AD = AM

Sau đó bạn chứng minh tam giác ADB = tam giác AMC (c.g.c) (cũng dễ thôi)

=> BD = MC (cặp cạnh tương ứng)

Ta có: DM = AM, BD = MC

=> DM : BM : BD = 3:4:5

=> tam giác BDM vuông tại M

=> góc AMB = 90o + 60o = 150o

10 tháng 7 2019

A B C M E

a) Xét tam giác: AMB và AMC có:

AM chung

BM=CM ( gt)

AB=AC ( tam giác ABC đều)

=> Tam giác AMB =Tam giác AMC (1)

b) Xét tam giác MBC vuông cân tại M

=> \(\widehat{MCB}=\frac{90^o}{2}=45^o\)

Tam giác ABC đều 

=> \(\widehat{ACB}=60^o\)

=> \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)

\(\widehat{BCE}=\widehat{MCB}-\widehat{ECM}=45^o-30^o=15^o\)

=> \(\widehat{ACM}=\widehat{BCE}\)(2)

Từ (1) => \(\widehat{MAB}=\widehat{MAC}\) mà \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}=60^o\)

=> \(\widehat{MAB}=\widehat{MAC}=60^o:2=30^o\)

=> \(\widehat{EBC}=\widehat{MAC}\left(=30^o\right)\)(3)

Xét tam giác MCA và tam giác ECB

có: AC=CB ( tam giác ABC đều)

\(\widehat{ACM}=\widehat{BCE}\)( theo (2))

\(\widehat{EBC}=\widehat{MAC}\)( theo (3))

=> Tam giác MCA =Tam giác ECB

=> CM=CE

=> tam giác MEC cân

10 tháng 7 2019

M A B C N 3 4 5 3 3

Câu c) Trên nửa mặt phẳng bờ AM  không chứa điểm C dựng tam giác đều AMN

=> \(\widehat{AMN}=60^o\)

và NA=NM=AM

Ta có: \(\widehat{NAB}+\widehat{BAM}=\widehat{NAM}=60^o=\widehat{BAC}=\widehat{BAM}+\widehat{MAC}\)

=> \(\widehat{NAB}=\widehat{MAC}\)(1)

Xét tam giác NAB và tam giác MAC 

có: AB=AC ( tam giác ABC đều)
NA=AM ( tam giác AMN đều)

\(\widehat{NAB}=\widehat{MAC}\)( theo (1))

=> Tam giác NAB=MAC

=> NB=MC

Suy ra: MN:BM:NB=MA:MB:MC=3:4:5

=> Tam giác NMB vuông tại M

=> \(\widehat{NMB}=90^o\)

=> \(\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=60^o+90^o=150^o\)