K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

A B C A' B' C' M

Ta có ; \(\frac{MA'}{AA'}=\frac{S_{BMC}}{S_{ABC}}\) ; \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\) ; \(\frac{MC'}{CC'}=\frac{S_{ABM}}{S_{ABC}}\)

\(\Rightarrow\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{BMC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bất đằng thức Cauchy : \(\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\left(\frac{MA'+MB'+MC'}{3}\right)^3=\left(\frac{1}{3}\right)^2\)

\(\Rightarrow\frac{MA'}{AA'}.\frac{MB'}{BB'}.\frac{MC'}{CC'}\le\frac{1}{27}\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}\\\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=1\end{cases}}\)\(\Rightarrow\frac{MA'}{AA'}=\frac{MB'}{BB'}=\frac{MC'}{CC'}=\frac{1}{3}\)

Vậy dấu "=" xảy ra khi M là trọng tâm của tam giác ABC.

Chỉ ra được câu a thôi ạ:((

Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC

Kẻ AH vuông góc BC< OK vuông góc BC

=>OK//AH

OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S

=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)

=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)

Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)

=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)

19 tháng 1 2021

A B C O P R Q

mai mình nghĩ cho cái này thay nọ thay kia, áp dụng ta lét ( lấy B làm đỉnh ) gợi ý là vậy chứ chưa giải ra :v 

Xét ΔBMQ có 

I là trung điểm của BM

IP//MQ

Do đó: P là trung điểm của BQ

Suy ra: BP=PQ(1)

Xét ΔAPC có 

M là trung điểm của AC

MQ//AP

Do đó: Q là trung điểm của PC

Suy ra: PQ=QC(2)

Từ (1) và (2) suy ra BP=PQ=QC

10 tháng 8 2021

ta có M là trung điểm AC=>AM=MC

mà MQ//AP=>Q là trung điểm PC(tính chất đường trung bình)

=>PQ=QC(1)

có I là trung điểm BM=>BI=IM

mà IP//MQ(do AP//MQ)=>P là trung điểm BQ=>BP=PQ(2)

(1)(2)=>BP=PQ=QC

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC