Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NP=10(cm)
\(\widehat{P}=37^0\)
\(\widehat{N}=53^0\)
a, \(NP=\sqrt{MN^2+MP^2}=10\left(cm\right)\)
\(\sin N=\dfrac{MP}{NP}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{N}\approx53^0\\ \widehat{P}=90^0-\widehat{N}\approx37^0\)
b, \(\dfrac{NE}{PE}=\dfrac{MN}{MP}=\dfrac{3}{4}\Rightarrow NE=\dfrac{3}{4}PE\)
\(NE+PE=NP=10\Rightarrow\dfrac{7}{4}PE=10\Rightarrow\left\{{}\begin{matrix}PE=\dfrac{40}{7}\left(cm\right)\\NE=\dfrac{30}{7}\left(cm\right)\end{matrix}\right.\)
a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN
nên \(ME\cdot MN=MI^2\left(1\right)\)
Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP
nên \(MF\cdot MP=MI^2\left(2\right)\)
Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)
hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)
Xét ΔMEF vuông tại M và ΔMPN vuông tại M có
\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)
Do đó: ΔMEF\(\sim\)ΔMPN
a: Xét ΔMNP vuông tại M có
sinˆN=MPPN=45
cosˆN=MNMP=35
tanˆN=MPMN=43
cotˆN=MNMP=34
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
{MH⋅NP=MN⋅MPMN2=HN⋅NP⇔{MH=2.4cmNH=1.8cm