K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2021

a, Vì \(\widehat{KMH}=\widehat{KHD}=\widehat{KMD}=90^0\) nên MHDK là hcn

b, Vì \(PD=DN;DH//PM\left(\perp MN\right)\) nên \(MH=HN\)

Vì \(PD=DN;DK//MN\left(\perp PM\right)\) nên \(PK=KM\)

Tứ giác MDNE có H là trung điểm MN;DE và \(MN\perp DE\) tại H nên là hthoi

Tứ giác MDPF có K là trung điểm PM;DF và \(MP\perp DF\) tại K nên là hthoi

c, Vì MDNE và MDPF là hình thoi nên MF//PD;ME//DN

Mà PD trùng PN nên ME trùng MF hay M;F;E thẳng hàng

Vì MDNE và MDPF là hình thoi nên \(MF=PD;ME=DN\)

Mà \(PD=DN\) nên \(MF=ME\)

Vậy E đx F qua M

a: Xét tứ giác MDNE có

I là trung điểm chung của MN và DE

góc MDN=90 độ

Do đó: MDNE là hình chữ nhật

b: Xét tứ giác MNFP có

D là trung điểm chung của MF và NP

MN=MP

Do đó: MNFP là hình thoi

a: H đối xứng A qua MN

nên HA vuông góc với MN tại trung điểm của HA

=>MN là phân giác của góc AMH(1)

H đối xứng B qua MP

nên HB vuông góc với MP tại D và D là trung điểm của HB

=>MP là phân giác của góc HMB(2)

Xét tứ giác MCHD có

góc MCH=góc MDH=góc DMC=90 độ

nên MCHD là hình chữ nhật

b: Từ (1), (2) suy ra góc BMA=2*90=180 độ

=>B,M,A thẳng hàng

a: Ta có: Q và A đối xứng với nhau qua MN

nên MN là đường trung trực của QA

=>MN vuông góc với QA tại trung điểm của QA

Ta có: Q và B đối xứng với nhau qua MP

nên MP là đường trung trực của QB

=>MP vuông góc với QB tại trung điểm của QB

Xét tứ giác MRQS có 

\(\widehat{MRQ}=\widehat{MSQ}=\widehat{SMR}=90^0\)

Do đó: MRQS là hình chữ nhật

b: Xét ΔMNP có

Q là trung điểm của NP

QS//MN

Do đó: S là trung điểm của MP

Xét tứ giác MQPB có 

S là trung điểm của MP

S là trung điểm của QB

Do đó: MQPB là hình bình hành

mà QM=QP

nên MQPB là hình thoi