Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác PNK vuông tại P và tam giác INK vuông tại I có:
\(\widehat{N}=\widehat{K}\)(tam giác MNK là tam giác cân)
NK:chung
Suy ra \(\Delta PNK=\Delta INK\)(cạnh huyền-góc nhọn)
=>PN=IK(1)
Mà do MNK cân tại M nên MN=MK(2)
Từ (1) và (2), suy ra MI=MP
b)Từ a) ta suy ra: \(\widehat{HNK}=\widehat{HKN}\)(hai góc tương ứng)<=> \(\widehat{IKH}=\widehat{PNH}\)
Xét tam giác PHN vuông tại P và tam giác IHK vuông tại I có:
\(NP=IK\left(cmt\right)\)
\(\widehat{IKH}=\widehat{PNH}\)(cmt)
Suy ra:....(cạnh góc vuông-góc nhọn kề)
=>HP=HI
Xét tam giác PMH và tam giác HMI có:
MH:chung
MP=MI(cmt)
HP=HI(cmt)
Suy ra:....(c-c-c)
=> \(\widehat{PMH}=\widehat{IMH}\)(hai góc tương ứng )
=>MH là tia phân giác của góc M
c) Từ b) suy ra MP=MI(2 cạnh tương ứng)
=>PMI là tam giác cân
Xét tam giác PMI có:
\(\widehat{P}=\widehat{I}=\frac{180^o-\widehat{M}}{2}\left(1\right)\)
Xét tam giác MNK có:
\(\widehat{K}=\widehat{N}=\frac{180^o-\widehat{M}}{2}\left(2\right)\)
=>\(\widehat{K}=\widehat{N}=\widehat{P}=\widehat{I}\)
Mà các cặp góc này ở vị trí đồng vị nên PI//NK
a) Xét tam giác MNP vuông tại M có I là trung điểm NP (gt)
=> MI cũng là phân giác trong của \(\widehat{NMP}\)
=> \(\widehat{NMI}=\widehat{IMP}\)
Xét tam giác MIP và tam giác MIN có:
IM chung
\(\widehat{NMI}=\widehat{IMP}\left(cmt\right)\)
NI=PI ( I là trung điểm NP)
=> Tam giác MIP=tam giác MIN (cgc)
b) Có tam giác MIP= tam giác MIN (cmt)
=> MP=MN (2 cạnh tương ứng)
Xét tam giác MNP vuông tại M có MP=MN (cmt)
=> Tam giác MNP vuông cân tại M
Có MI là đường trung tuyển tam giác MNP
Mà trong tam giác vuông cân đường trung tuyến trùng với đường cao
=> MI _|_ NP (đpcm)
c) F là điểm gì vậy?