Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
@Akai Haruma @Nguyễn Việt Lâm @Nguyễn Việt Lâm @Lightning Farron giúp em
Lời giải:
a)
\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)
b)
\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)
\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)
c)
\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)
\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)
d)
\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)
\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)
e)
\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)
\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)
Ta có ddpcm.
1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)
=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)
2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)
\(=-cos\left(\pi-A\right)=cosA\)
4) bạn ơi +2 vào vế phải mới đúng nhé
2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)
\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)
=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)
\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)
= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3
= sin2A + sin2B + sin2C
Giả sử các biểu thức đều xác định:
a/ \(sin^2x.tanx+cos^2x.cotx+2sinx.cosx\)
\(=sin^2x.\frac{sinx}{cosx}+sinx.cosx+cos^2x.\frac{cosx}{sinx}+sinx.cosx\)
\(=sinx\left(\frac{sin^2x}{cosx}+cosx\right)+cosx\left(\frac{cos^2x}{sinx}+sinx\right)\)
\(=sinx\left(\frac{sin^2x+cos^2x}{cosx}\right)+cosx\left(\frac{cos^2x+sin^2x}{sinx}\right)=\frac{sinx}{cosx}+\frac{cosx}{sinx}=tanx+cotx\)
b/
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+tan^2x=1+tan^2x+tan^2x=1+2tan^2x\)
c/ \(\frac{cosx}{1+sinx}+tanx=\frac{cosx\left(1-sinx\right)}{1-sin^2x}+\frac{sinx.cosx}{cos^2x}=\frac{cosx-cosx.sinx}{cos^2x}+\frac{sinx.cosx}{cos^2x}\)
\(=\frac{cosx}{cos^2x}=\frac{1}{cosx}\)
d/ \(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}+\frac{sinx\left(1+cosx\right)}{sin^2x}\)
\(=\frac{sinx-sinx.cosx}{1-cos^2x}+\frac{sinx+sinx.cosx}{sin^2x}=\frac{sinx-sinx.cosx}{sin^2x}+\frac{sinx+sinx.cosx}{sin^2x}\)
\(=\frac{2sinx}{sin^2x}=\frac{2}{sinx}\)
\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)
a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)
b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)
c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)
d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)
Tổng ba góc trong 1 tam giác bằng 180 ° nên:
M ^ + N ^ + P ^ = 180 ° ⇔ M ^ + N ^ = 180 ° - P ^ ⇔ M ^ + N ^ 2 = 90 ° - P ^ 2 ⇒ cos M + N 2 = sin P 2 ; sin M + N 2 = cos P 2 sin M + sin N + sin P = 2 sin M + N 2 . cos M - N 2 + 2 sin P 2 . cos P 2 = 2 cos P 2 . cos M - N 2 + 2 sin P 2 . cos P 2 = 2 cos P 2 . cos M - N 2 + sin P 2 = 2 cos P 2 . cos M - N 2 + cos M + N 2 = 2 cos P 2 . 2 cos M 2 . cos N 2 = 4 cos M 2 . cos N 2 . cos P 2