K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

M N P G x y z a b c
Đặt độ dài các cạnh như hình vẽ trên.
Cô sẽ dùng kiến thức lượng giác lớp 10 để giải. Một cố công thức và bất đẳng thức cơ sở để làm bài này, các em có thể kham khảo trên các webside khác.

Áp dụng công thức \(cotA=\frac{b^2+c^2-a^2}{4S}\) ( S là diện tích của tam giác chứa góc A) 
 và dễ thấy \(S_{\Delta GMN}=S_{\Delta GNP}=S_{\Delta GMP}=\frac{1}{3}S_{\Delta MNP}\). Từ đó ta có:

\(cotGNP+cotGPM+cotGMN=\frac{a^2+y^2-b^2}{4S_{\Delta GNP}}+\frac{z^2+b^2-c^2}{4.S_{\Delta GPM}}+\frac{x^2+c^2-a^2}{4.S_{\Delta GMN}}\) 
                                                              \(=\frac{x^2+a^2-b^2+z^2+b^2-c^2+x^2+c^2-a^2}{4.\frac{1}{3}.S_{\Delta MNP}}\)
                                                             \(=\frac{x^2+y^2+z^2}{4.\frac{1}{3}.S_{\Delta MNP}}=3\sqrt{3}\)
 Suy ra:                          \(x^2+y^2+z^2=4\sqrt{3}.S_{\Delta MNP}\). (1) 
Áp dụng công thức: \(x=2R.sinP;y=2R.sinM;z=2r.sinN;S_{\Delta MNP}=2R.sinM.sinN.sinP\) ( R là bán kính đường tròn nội tiếp tam giác ). Thay vào (1) và rút gọn ta có:
\(sin^2M+sin^2N+sin^2P=2\sqrt{3}.sinM.sinN.sinP\)
\(\Leftrightarrow\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)=9.sinM.sinN.sinP\)(2) 
Áp dụng bất đẳng thức: Trong tam giác MNP bất kì ta có: \(sinM+sinN+sinP\le\frac{3\sqrt{3}}{2}\) vào vế trái của (2) ta có:
\(\frac{3\sqrt{3}}{2}\left(sin^2M+sin^2N+sin^2P\right)\ge\left(sinM+sinN+sinP\right)\left(sin^2M+sin^2N+sin^2P\right)\)
                                                                  \(\ge3\sqrt[3]{sinM.sinN.sinP}.3\sqrt[3]{sin^2M.sin^2N.sin^2P}=9.sinM.sinN.sinP\).
 Dấu bằng xảy ra khi \(sinM=sinN=sinP\) hay \(\widehat{M}=\widehat{N}=\widehat{P}=60^o\). Hay tam giác MNP đều.
                                          

17 tháng 2 2018

\(S_{MNP}=\frac{5}{8}S_{ABC}\)

15 tháng 2 2018

Kết quả làm tròn tới 5 chữ sô thập phân nha

12 tháng 10 2018

A B C D M N P Q H

a) Từ điểm M kẻ đường thẳng vuông góc với AD cắt AD tại Q.

Áp dụng ĐL Pytagore cho \(\Delta\)MCN vuông ở C và \(\Delta\)MQP vuông ở Q; ta có:

CM2 + CN2 = MN2;  MQ2 + PQ2 = MP2

\(\Delta\)MNP là tam giác đều nên MN = MP. Do đó: CM2 + CN2 = MQ2 + PQ2 (1)

Dễ thấy: Tứ giác ABMQ là hình chữ nhật => AQ = BM và MQ = AB = a      (2)

(1); (2) => CM2 + CN2 = a2 + PQ2 <=> (a - BM)2 + CN2 = a2 + (AP - AQ)2

<=> a2 - 2a.BM + BM2 + CN2 = a2 + AP2 - 2.AP.AQ + AQ2

<=> CN2 - AP2 = a2 - 2.AP.AQ + AQ2 - a2 + 2a.BM - BM2

<=> CN2 - AP2 = 2a.BM - 2.AP.AQ + (AQ2 - BM2)

<=> CN2 - AP2 = 2a.BM - 2.AP.BM   (Do AQ = BM theo cmt)

<=> CN2 - AP2 = 2.BM.(a - AP) <=> CN2 - AP2 = 2.BM.DP (đpcm).

b) Hạ đường cao NH của \(\Delta\)MNP: 

Ta có: cos 600 = \(\frac{\sqrt{3}}{2}\)=> NH = \(\frac{\sqrt{3}}{2}\).MN = \(\frac{\sqrt{3}}{2}\).MP (Vì \(\Delta\)MNP đều)

Theo quan hệ đường xiên hình chiếu: MP > MQ = a => NH > \(\frac{\sqrt{3}}{2}\).a

=> SMNP = MP.NH /2 > \(\frac{\sqrt{3}}{4}\)a2 

Vậy Min SMNP = \(\frac{\sqrt{3}}{4}\)a2 .Dấu "=" xảy ra <=> N là trung điểm của DC và M;P nằm trên BC;AD cho ^CNM = ^DNP = 600.

12 tháng 10 2018

\(\sin60^0=\frac{\sqrt{3}}{2}\) mới đúng, bn sửa lại nhé.

21 tháng 10 2021

a, Vì \(NP^2=46,24=10,24+36=MN^2+MP^2\) nên tg MNP vuông tại M

b, Áp dụng HTL: \(\left\{{}\begin{matrix}KN=\dfrac{MN^2}{NP}=\dfrac{128}{85}\left(cm\right)\\KP=\dfrac{MP^2}{NP}=\dfrac{90}{17}\left(cm\right)\\MK=\sqrt{KN\cdot NP}=\dfrac{48}{17}\left(cm\right)\end{matrix}\right.\)

c, \(S_{MNP}=\dfrac{1}{2}MN\cdot MP=\dfrac{1}{2}\cdot6\cdot3,2=9,6\left(cm^2\right)\)

a: góc EFP=1/2*180=90 độ

góc NMP=góc NFP=90 độ

=>NMFP nội tiếp

b: NMFP nội tiếp

=>góc MNP=góc MFP