Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{GM}=\left(-\dfrac{1}{3};0\right)\)
Gọi \(A\left(x;y\right)\Rightarrow\overrightarrow{AM}=\left(1-x;1-y\right)\)
\(\overrightarrow{AM}=3\overrightarrow{GM}\Rightarrow\left\{{}\begin{matrix}1-x=-1\\1-y=0\end{matrix}\right.\) \(\Rightarrow A\left(2;1\right)\)
DO B thuộc x+y-7=0 \(\Rightarrow B\left(x;7-x\right)\)
\(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=2-x\\y_C=3y_G-y_A-y_B=x-5\end{matrix}\right.\) \(\Rightarrow C\left(2-x;x-5\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(-x;x-6\right)\)
Do AC vuông góc x+y-7=0 \(\Rightarrow\dfrac{-x}{1}=\dfrac{x-6}{1}\Rightarrow x=3\Rightarrow\left\{{}\begin{matrix}B\left(3;4\right)\\C\left(-1;-2\right)\end{matrix}\right.\)
tham khảo
Phương pháp giải
- Gọi tọa độ của dựa vào điều kiện .
- Sử dụng điều kiện tam giác vuông tìm .
- Tính diện tích tam giác theo công thức diện tích tam giác vuông.
Một số bài toán viết phương trình đường thẳnga: Tọa độ trọng tâm là:
x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3
c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
a.
\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt
Phương trình BC:
\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)
b.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)
(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)
\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)
Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)