K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

22 tháng 9 2021

CM : MO vuông góc với EF cơ mà

 

a: Xét ΔMIN vuông tại I có IE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MI^2\left(1\right)\)

Xét ΔMIP vuông tại I có IF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MI^2\left(2\right)\)

Từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

hay \(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Xét ΔMEF vuông tại M và ΔMPN vuông tại M có 

\(\dfrac{ME}{MP}=\dfrac{MF}{MN}\)

Do đó: ΔMEF\(\sim\)ΔMPN

24 tháng 9 2021

CMR MO vuông góc với EF

19 tháng 7 2017

BAN TU VE HINH NHA 

a, trong tam giác MNK có \(\sin N=\frac{4}{5}\Rightarrow GOCN\approx53\)

ap dung dl pitago vao tam giac vuong MNK co \(NK^2+MK^2=NM^2\Rightarrow NK^2=5^2-4^2=3^2\Rightarrow NK=3\)

B, ap dung he thuc luong vao tam giac vuong MNK co \(MK^2=MC\cdot MN\)

                                               tam giac vuong MKP co\(MK^2=MD\cdot MP\)

 tu day suy ra  MC*MN=MD*MP

C, ta co \(NP=NK+KP\)

ma \(NK=MK\cdot cotN\) \(KP=MK\cdot cotP\)

suy ra \(NP=MK\cdot\left(cotN+cotP\right)\)

D,  ta co  trong tam giac vuong MDK \(MD=MK\cdot cosM=4\cdot cos30=2\sqrt{3}\)

ma trong tam giac vuong MKP c o\(MK^2=MD\cdot MP\Rightarrow MP=\frac{4^2}{2\sqrt{3}}=\frac{8\sqrt{3}}{3}\)

 lai co \(MD+DP=MP\Rightarrow DP=\frac{2\sqrt{3}}{3}\)